1. При делении допустимы любые значения, кроме нуля, а значит решаем уравнение 7N+55 не равно0 7N не равно -55 N не равно -55/7 и т.к. -55/7 - не является целым, то значит модно утверждать, что может принимать любые значения. 2. Т.к. у квадрата все стороны равны, а нам надо разделить его на прямоугольники 1х4, то верно было предположить, что хотя бы одна сторона квадрата должна разделиться на 1 и на 4. Но т.к. у квадрата все стороны равны, достаточно проверить всего одну сторону. 2018/1=2018 - целое число 2018/4=504,5 - число не целое, а значит и разделить поровну нельзя 3. Последнее не знаю, прости :[
f(x)= 2x+3 ∛x² Найдите: а) Критические точки функции f(x) на отрезке [-8;1] б) Наибольшее и наименьшее значение функции f(x) на отрезке [-8;1] --- a) Критическая точка функции это значение аргумента при котором производная функции равно нулю или не существует. f'(x) = 2 +3*(2/3) x ^(-1/3) =2 +2/∛x =2(∛x +1) / ∛x f'(x) =0 ⇔ ∛x +1 = 0 ⇔∛x = -1 ⇒ x = -1 и ∛x = 0 ⇒ x = 0 , где производная функции не существует. * * * -1 и 0 ∈ [ -8 ;1] . * * * ответ : -1 ; 0 . б) f'(x) + - + [-1 ] 0 f(x) (возр) ↑ max (убыв) ↓ min (возр) ↑
max f(x) =f(-1) =2*(-1) +3∛(-1)² = -2+3 =1. min f(x) = f(0) =2*(0) +3∛(0)² = 0. ответ : 1 ; 0 .
3) Найдите наибольшее и наименьшее значение функции f(x) =x^5+ 2x^3+3x-11 на отрезке [-1;1] --- f ' (x) =(x⁵ + 2x³ +3x - 11 ) ' =5x⁴+6x² +3 >0 функция возрастающая при всех x ∈( -∞ : ∞) . min f(x) = f(-1) =(-1)⁵ + 2*(-1)³ +3*(-1) - 11 = -1 -2 -3 -11 = -17. max f(x) = f(1) =1⁵ + 2*1³ +3*1 - 11 = - 5. ответ : -17 ; - 5 .
4) Дана функция f(x) = x^3+3x^2+3x+a. Найдите значение параметра а, при котором наименьшее значение функции f(x) на отрезке [-2;1] равно 6.
f(x) = x³+3x²+3x+a ; f '(x) = 3x²+6x+3 =3(x² +2x+1) =3(x+1)² ≥ 0 →функция везде возрастает min f(x) = f(-2) = (-2)³ +3*(-2)² +3*(-2) +a = -8 +12 -6 +a = a - 4 . По условию min f(x) = 6 a - 4 =6 ⇔a =4+6
2x²-3x-2=0
2x²+x-4x-2=0
x(2x+1)-2(2x+1)=0
(2x+1)(x-2)=0
x=–½; x=2.