М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
лоххз
лоххз
03.11.2021 20:04 •  Алгебра

В таблице приведены результаты (в метрах) 40 участников соревнований по метанию копья
1) Разбейте сведения на классы группы 25-29; 30-34 и простройте таблицу частот
2) простройте полигон частот
3) найдите среднее значение моду и медиану выборки
мне очень нужно​


В таблице приведены результаты (в метрах) 40 участников соревнований по метанию копья1) Разбейте све

👇
Открыть все ответы
Ответ:
Nurik1990
Nurik1990
03.11.2021

Сначала решаем соотв. однородное уравнение, запишем его характеристическое уравнение

\lambda^2-6\lambda+9=0λ

2

−6λ+9=0

имеем случай кратных действительных корней, значит общее решение однородного уравнения

y(x)=C_1*e^{3x}+C_2*x*e^{3x}y(x)=C

1

∗e

3x

+C

2

∗x∗e

3x

Далее применим метод вариации. Тогда

\begin{gathered} \left( < br / > \begin{array}{cc} < br / > e^{3 x} & e^{3 x} x \\ < br / > 3 e^{3 x} & 3 x e^{3 x}+e^{3 x} \\ < br / > \end{array} < br / > \right) * \left( < br / > \begin{array}{c} < br / > C_1'(x) \\ < br / > C_2'(x) \\ < br / > \end{array} < br / > \right)=\left( < br / > \begin{array}{c} < br / > 0 \\ < br / > 9 x^2-12 x+2 \\ < br / > \end{array} < br / > \right) \end{gathered}

<br/>

<br/>e

3x

<br/>3e

3x

<br/>

e

3x

x

3xe

3x

+e

3x

<br/>

<br/>

<br/>C

1

(x)

<br/>C

2

(x)

<br/>

<br/>

=

<br/>

<br/>0

<br/>9x

2

−12x+2

<br/>

<br/>

Откуда получим

C_1'(x)=-e^{-3x}*x*(9x^2-12x+2), < br / > C_2'(x)=e^{-3x}*(9x^2-12x+2)C

1

(x)=−e

−3x

∗x∗(9x

2

−12x+2),<br/>C

2

(x)=e

−3x

∗(9x

2

−12x+2)

Интегрированием находим

C_1(x)=-e^{-3 x}(x^2 - 3 x^3)+A, C_2(x)=e^{-3 x} (2 x - 3 x^2)+BC

1

(x)=−e

−3x

(x

2

−3x

3

)+A,C

2

(x)=e

−3x

(2x−3x

2

)+B

Следовательно общее решение уравнения запишется как (переобозначим константы A и B )

y(x)=(-e^{-3 x}(x^2 - 3 x^3)+C_1)*e^{3x}+(e^{-3 x} (2 x - 3 x^2)+C_2)*x*e^{3x}y(x)=(−e

−3x

(x

2

−3x

3

)+C

1

)∗e

3x

+(e

−3x

(2x−3x

2

)+C

2

)∗x∗e

3x

или

y(x)=C_1*e^{3x}+x*C_2*e^{3x}+x^2y(x)=C

1

∗e

3x

+x∗C

2

∗e

3x

+x

2

Соотв. постоянные для нашей задачи Коши находятся из системы

\left \{ {{y(0)=0} \atop {y'(0)=3}} \right.{

y

(0)=3

y(0)=0

Откуда

\left \{ {{C_1=0} \atop {C_2=3}} \right.{

C

2

=3

C

1

=0

4,6(71 оценок)
Ответ:
Пусть Т1, Т2 и Т3 время спуска, подъема и спуска по неподвижному эскалатору.
Л – длина эскалатора, Вм – скорость мальчика, Вэ – скорость эскалатора.
Имеем
Т1(Вм+Вэ) = Л при движении по ходу эскалатора
Т2(Вм-Вэ) = Л при движении против хода эскалатора,
Далее приравниваем
Т1(Вм+Вэ) = Т2(Вм-Вэ) тогда
Т1/Т2 = (Вм-Вэ) /(Вм+Вэ)
Также Т1*Вм = 30, Т2*Вм = 150, следовательно Т1/Т2 = 30/150 = 1/5, т. е. спуск по движущимуся эскалатору в пять раз быстрее чем подъем по нему.
Далее (Вм-Вэ) /(Вм+Вэ) = 1/5, решаем… Вм/Вэ = 3/2, т. е мальчик движеться в полтора раза быстрее эскалатора.
Пишем
Вэ+3/2Вэ = Л/Т1 при спуске по движущемуся эскалатору
3/2 Вэ = Л/Т3 при спуске по неподвижному эскалатору, делим первое уравнение на второе
2,5/1,5 = Т3/Т1, отсюда Т3 = 2,5*Т1/1,5
Поскольку количество пройденных ступеней прямо пропорционально времени подъема-спуска, то при спуске по неподвижному эскалатору будет пройдено
Х = 2,5*30/1,5 = 50 ступеней.
Скорей всего правильно это_
X=длина экскалатора в ступеньках:
30+X=150-X
X=150-X-30
X=120-X
2X=120
X=120/2
X=60 - кол-во ступенек, при недвижущемся экскалаторе
4,4(31 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ