Если прямая перпендикулярно плоскости, то ее направляющий вектор является нормальным вектором плоскости.
1)Уравнение плоскости через нормальный вектор: , где A, B, C - координаты нормального вектора плоскости N(A,B,C). Уравнение данной плоскости ⇒ N(2,-3,4).
2)Уравнение прямой через точку направляющий вектор: , где - координаты точки M(), через которую проходит прямая, - координаты направляющего вектора S(). По условию S() = N(A,B,C) ⇒ N(2,-3,4) = S(2,-3,4); M(1,-2,3).
Произведение Льюиса Кэррола "Алиса в стране чудес" является поистине великолепным примером странной, но весьма поучительной истории. Почти всю книгу можно разложить на афоризмы, которые будут давать ответы на все вопросы, которые только можно задать, с психологической точки зрения. "Я не сумасшедший, просто моя реальность отличается от твоей" (С) Чеширский кот. Этого персонажа я считаю, стоит выделить особенно, ведь все его появления и фразы направляли Алису в нужную сторону, не говоря ничего "напрямую". Это безумное, но тем и невероятно интересное произведение, ведь нормальных людей не бывает, все такие разные и непохожие. И это нормально. Этому и учит нас автор.
1)Уравнение плоскости через нормальный вектор: , где A, B, C - координаты нормального вектора плоскости N(A,B,C).
Уравнение данной плоскости ⇒ N(2,-3,4).
2)Уравнение прямой через точку направляющий вектор: , где - координаты точки M(), через которую проходит прямая, - координаты направляющего вектора S().
По условию S() = N(A,B,C) ⇒ N(2,-3,4) = S(2,-3,4); M(1,-2,3).
3)Готовое уравнение прямой: