2) Ось симметрии параболы проходит через вершину параболы параллельно оси Оу, значит, ось симметрии можно задать уравнением х=2
3) Точки пересечения графика функции с осями координат:
с осью Оу: х=0, y(0)=0²-4*0+3=3
Значит, (0;3) - точка пересечения параболы с осью Оу
с осью Ох: у=0, x²-4x+3=0
D=(-4)²-4*3*1=16-12=4=2²
x₁=(4+2)/2=6/2=3
x₂=(4-2)/2=2/2=1
(3;0) и (1;0) - точки пересечения с осью Ох
4) Строим график функции:
Уже найдены вершина параболы и точки пересечения с осями координат. Точка (4;3) - расположена симметрично точке (0;3) относительно оси симметрии параболы
5) По рисунку видно, что график функции находится в I, II и IV четвертях.
Раскладываем на множители sin+sin3x+sin5x sinx+sin3x+sin5x=sinx+sin(x+2x)+sin(3x+2x)=sinx+sinx*cos2x+cosx*sin2x+sin3x*cos2x+cos3x*sin2x=sinx+sinx*cos2x+2sinx*cos^2x+sin(2x+x)*cos2x+cos(x+2x)*sin2x=sinx+sinx*cos2x+2sinx*cos^2x+(2sinx*cos^2x+cos2x*sinx)*cos2x+(cosx*cos2x-sinx*sin2x)*2sinx*cosx=sinx(1+cos2x+2cos^2x+(2cos^2x+cos2x)*cos2x+2cosx*(cosx*cos2x-sinx*sin2x))=sinx(1+cos2x+2cos^2x+cos^2(2x)+2cos^2x*cos2x+2cos^2x*cos2x-4sin^2x*cos^2x)=sinx(1+cos2x+2cos^2x+cos^2(2x)+4cos^2x*cos2x-sin^2(2x))=sinx(2cos^2(2x)+cos2x+2cos^2x+4cos^2x*cos2x)=sinx(2cos^2(2x)+cos2x+1+cos2x+4cos^2x*cos2x)=sinx(2cos^2(2x)+2cos(2x)+2(1+cos2x)*cos2x+1)=sinx(2cos^2(2x)+2cos2x+2cos2x+2cos^2(2x)+1)=sinx(4cos^2(2x)+4cos(2x)+1)=sinx*(2cos(2x)+1)^2
теперь раскладываем cosx+cos3x+cos5x cosx+cos3x+cos5x=cosx+cos(2x+x)+cos(2x+3x)=cosx+cos2x*cosx-sin2x*sinx+cos2x*cos3x-sin2x*sin3x=cosx+cos2x*cosx-2sin^2x*cosx+cos2x*cos(x+2x)-2sinx*cosx*sin(x+2x)=cosx+cos2x*cosx-2sin^2x*cosx+cos2x*(cosx*cos2x-2sin^2x*cosx)-2sinx*cosx*sin(x+2x)=cosx(1+cos2x-2sin^2x+cos^2(2x)-2sin^2x*cos2x-2sinx*(sinx*cos2x+cosx*sin2x))=cosx(2cos2x+cos^2(2x)-2sin^2x*cos2x-2sin^2x*cos2x-4sin^2x*cos^2x)=cosx(2cos2x+cos^2(2x)-4sin^2x*cos2x-4sin^2x*cos^2x)=cosx(2cos2x+cos^2(2x)-2(1-cos2x)*cos2x-sin^2(2x))=cosx(2cos2x+cos^2(2x)-sin^2(2x)-2cos2x+2cos^2(2x))=cosx(2cos^2(2x)-1+2cos2x-2cos2x+2cos^2(2x))=cosx(4cos^2(2x)-1)=cosx(2cos2x-1)(2cos2x+1) подставляем в уравнение: ответ:
y=x²-4x+3
y=ax²+bx+c
a=1, b=-4, c=3
1) Координаты вершины параболы:
х(в)= -b/2a = -(-4)/(2*1)=4/2=2
у(в) = 2²-4*2+3=4-8+3=-1
V(2; -1) - вершина параболы
2) Ось симметрии параболы проходит через вершину параболы параллельно оси Оу, значит, ось симметрии можно задать уравнением х=2
3) Точки пересечения графика функции с осями координат:
с осью Оу: х=0, y(0)=0²-4*0+3=3
Значит, (0;3) - точка пересечения параболы с осью Оу
с осью Ох: у=0, x²-4x+3=0
D=(-4)²-4*3*1=16-12=4=2²
x₁=(4+2)/2=6/2=3
x₂=(4-2)/2=2/2=1
(3;0) и (1;0) - точки пересечения с осью Ох
4) Строим график функции:
Уже найдены вершина параболы и точки пересечения с осями координат. Точка (4;3) - расположена симметрично точке (0;3) относительно оси симметрии параболы
5) По рисунку видно, что график функции находится в I, II и IV четвертях.
Объяснение: