, если решать через дисриминант, там же надо 3 значення, тоесть а=... b= c= Так вот что делать если нету с, только а и b , что написать вместо с ничего или ноль?
В 1 сосуде 40 кг конц-ции x%. То есть 40*x/100=0,4x кг кислоты. Во 2 сосуде 30 кг конц-ции y%. То есть 30*y/100=0,3y кг кислоты. Если их слить вместе, то будет 0,4x+0,3y кг кислоты на 70 кг раствора, и это 73%. 0,4x+0,3y=70*0,73=51,1 Если же слить равные массы, то получится 72%. Например, сливаем по 100 кг. В 1 будет x кг, во 2 будет y кг. А всего 72% от 200 кг = 144 кг. x+y=144 Получаем систему { 0,4x+0,3y=51,1 { y=144-x Подставляем 0,4x+0,3(144-x)=51,1 0,4x+43,2-0,3x=51,1 0,1x=51,1-43,2=7,9 x=79; y=144-79=65 Во 2 растворе содержится 30*65/100=65*3/10=19,5 кг.
1 печник может сложить всю печь за x часов, по 1/x части в час.
2 печник может сложить всю печь за y часов, по 1/y части в час.
Вместе они сделают печь за 12 часов, по 1/12 части в час.
1/x + 1/y = 1/12
Если 1 печник проработает 2 ч, а 2 - 3 часа, то они сделают 1/5 часть.
2/x + 3/y = 1/5
Делаем замену 1/x = a, 1/y = b
{ a + b = 1/12
{ 2a + 3b = 1/5
Умножаем 1 уравнение на 3, а 2 уравнение на -1
{ 3a + 3b = 3/12 = 1/4
{ -2a - 3b = -1/5
Складываем уравнения
3a - 2a = 1/4 - 1/5 = 5/20 - 4/20
a = 1/x = 1/20; x = 20
b = 1/y = 1/12 - a = 1/12 - 1/20 = 5/60 - 3/60 = 2/60 = 1/30; y = 30
ответ: 1 печник сложит печь за 20 часов, а 2 печник за 30 часов.