В зависимости от значений чисел k и b определите в каких четвертях проходит график функции, и в какой точке график функции пересекает точку 0y 1)y= -6x+7 2) y=15+5 3)y=18 - 1,4x 4) y=-8x 5)y=
1) Один корень получается сразу: 2x - a - 2 = 0 x1 = (a+2)/2 = a/2 + 1 2) Теперь решаем логарифм. Область определения: { x+a+1 > 0 { x+a+1 ≠ 1 { (2ax-6a+3)/(x^2-6x+12) > 0 Знаменатель x^2-6x+12 = x^2-6x+9+3=(x-3)^2 + 3 > 0 при любом х, поэтому { x > -a-1 { x ≠ -a { 2ax-6a+3 > 0 Решаем { x > -a-1 { x ≠ -a { x > (6a-3)/(2a) Теперь решаем само уравнение
2ax - 6a + 3 - x^2 + 6x - 12 = 0 -x^2 + 2x(a+3) - (6a+9) = 0 Умножаем всё на -1. Решаем, как обычное квадратное уравнение x^2- 2x(a+3) + (6a+9) = 0 D/4 = (a+3)^2 - (6a+9) = a^2 + 6a + 9 - 6a - 9 = a^2 При a = 0 будет один корень x2 = a + 3 = 3; x1 = a/2 + 1 = 1 Это решение, при котором будет 2 разных корня.
При a ≠ 0 будет D = a^2 > 0, тогда будет 2 корня. x2 = a + 3 - a = 3 x3 = a + 3 + a = 2a + 3 Найдем, при каких а корни x2 и x3 равны x1. 1) 3 = a/2 + 1; a/2 = 2; a = 4; x2 = x1 = 3 Подставляем в область определения { 3 > -4-1; 3 > -5 - верно { 3 ≠ -4 - верно { x > (6a-3)/(2a); 3 > (6*4-3)/8 = 21/8 - верно Это решение
График её - парабола ветвями вниз.
Находим координаты её вершины.
Хо = -в/2а = -1/(2*(-6)) = 1/12.
Уо = -6*(1/144) + (1/12) + 1 = 25/24.
Находим точки пересечения графиком оси Ох (при этом у = 0).
-6x²+x+1 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=1^2-4*(-6)*1=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√25-1)/(2*(-6))=(5-1)/(2*(-6))=4/(2*(-6))=4/(-2*6)=4/(-12)=-4/12=-(1/3) ≈ -0,33333;
x₂=(-√25-1)/(2*(-6))=(-5-1)/(2*(-6))=-6/(2*(-6))=-6/(-2*6)=-6/(-12)=-(-6/12)=-(-0.5)=0,5.
Определим ещё несколько точек для построения графика.
x = -3 -2 -1 0 1 2 3
y = -56 -25 -6 1 -4 -21 -50.