2) х + 4,2 = 6,9 4) 0,3х = 15 6) (1/5)х + 4 = -2 1/3
х = 6,9 - 4,2 х = 15 : 0,3 (1/5)х = -2 1/3 - 4
х = 2,7 х = 50 (1/5)х = -6 1/3 = -19/3
х = -19/3 : 1/5
х = -19/3 · 5 = -95/3
х = -31 целая 2/3
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
8) 3(2х + 5) - 2(3х + 1) = 2 10) 5 1/6 : х = -31
6х + 15 - 6х - 2 = 2 31/6 : х = -31
6х - 6х = 2 + 2 - 15 х = 31/6 : (-31)
0х = -11 х = 31/6 · (-1/31)
х = ∅ (на 0 делить нельзя!) х = -1/6
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
12) х² + 16 = 0
D = b² - 4ac = 0² - 4 · 1 · 16 = 0 - 64 = -64
Так как дискриминант меньше 0, то уравнение не имеет решений.
ответ: нет решений.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
14) 6х² + х = 0
х · (6х + 1) = 0
х = 0 и 6х + 1 = 0
6х = -1
х = -1/6
ответ: (-1/6; 0).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
16) х² + 8х + 16 = 0
D = b² - 4ac = 8² - 4 · 1 · 16 = 64 - 64 = 0
Так как дискриминант равен 0, то квадратное уравнение имеет один корень
х = (-8)/(2·1) = -8/2 = -4
ответ: (-4).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
18) х² - 7х + 6 = 0
D = b² - 4ac = (-7)² - 4 · 1 · 6 = 49 - 24 = 25
√D = √25 = 5
х₁ = (7-5)/(2·1) = 2/2 = 1
х₂ = (7+5)/(2·1) = 12/2 = 6
ответ: (1; 6).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
20) (2х - 5)(х + 3) = 0
2х - 5 = 0 и х + 3 = 0
2х = 5 х = -3
х = 5 : 2
х = 2,5
ответ: (-3; 2,5).
Нужно воспользоваться формулой разности квадратов практически во всех примерах: (a - b)(a + b) = a² - b².
Выполните умножение:
1) 5b(b - 1)(b + 1) = 5b(b² - 1) = 5b³ - 5b;
2) (c + 2)(c - 2) · 8c² = (c² - 4) · 8c² = 8c⁴ - 32c²;
3) (m - 10)(m² + 100)(m + 10) = (m - 10)(m + 10)(m² + 100) =
= (m² - 100)(m² + 100) = m⁴ - 10 000;
4) (a² + 1)(a² - 1)(a⁴ + 1) = (a⁴ - 1)(a⁴ + 1) = a⁸ - 1;
Упростите выражение:
1) (x + 1)(x - 1) - (x + 5)(x - 5) + (x + 1)(x - 5) = x² - 1 - (x² - 25) + x² - 5x + x - 5 = x² - 1 - x² + 25 + x² - 4x - 5 = x² - 4x + 19;
2) 81a⁸ - (3a² - b³)(9a⁴ + b⁶)(3a² + b³) = 81a⁸ - (3a² - b³)(3a² + b³)(9a⁴ + b⁶) = 81a⁸ - (9a⁴ - b⁶)(9a⁴ + b⁶) = 81a⁸ - (81a⁸ - b¹²) = 81a⁸ - 81a⁸ + b¹² = b¹².