Если всё-таки дан периметр прямоугольника, то: периметр прямоугольника P=2(a+b) площадь прямоугольника S=a*b. Составим систему уравнений 2(a+b)=22 a+b=11 a=11-b a*b=24 a*b=24 (11-b)*b=24
11b-b²=24 -b²+11b-24=0 D=11²-4*(-1)*(-24)=121-96=25 b=(-11-5)/(-2)=8 b=(-11+5)/(-2)=3 Решением задачи можно принять любой корень уравнения, допустим примем b=8 см, тогда сторона а=11-8=3 см. Если за решение принять b=3 см, то а=8 см, то есть значения сторон прямоугольника не изменятся.
1 этап постановка задачи- найти стороны прямоугольника 2 этап составление математического описания изучаемого объекта - у нас геометрическая фигура четырехугольник , у которого все углы прямые и стороны попарно равны. Площадь прямоугольника ищется произведением его смежных сторон. 3 этап выбор метода решения уравнений математического описания и реализация его в форме моделирующей программы. Метод использован составления уравнения , зная части сторон прямоугольника 7 частей одна сторона, и 6 частей другая. Пусть х- это 1 часть, тогда 7х и 6х смежные стороны. Уравнение: 7х*6х=168 42х²=168 х²=168/42 х²=4 х=√4 х=2 7*2=14 одна сторона и 6*2=12 вторая сторона
периметр прямоугольника P=2(a+b)
площадь прямоугольника S=a*b.
Составим систему уравнений
2(a+b)=22 a+b=11 a=11-b
a*b=24 a*b=24 (11-b)*b=24
11b-b²=24
-b²+11b-24=0
D=11²-4*(-1)*(-24)=121-96=25
b=(-11-5)/(-2)=8 b=(-11+5)/(-2)=3
Решением задачи можно принять любой корень уравнения, допустим примем b=8 см, тогда сторона а=11-8=3 см.
Если за решение принять b=3 см, то а=8 см, то есть значения сторон прямоугольника не изменятся.
ответ: стороны прямоугольника 8 см и 3 см.