Вектор, перпендикулярный плоскости 2x + 3y - 4z + 2 = 0 имеет координаты (2; 3; -4). Он обязательно будет лежать в плоскости, перпендикулярной данной, уравнение которой нам нужно составить. Отложим этот вектор, например, от точки A (-3; 2; 1), т. е. проведём вектор АС, который лежит в искомой плоскости. Получим точку С (-1; 5; -3), которая тоже лежит в искомой плоскости. Зная координаты трёх точек A (-3; 2; 1), В (4; -1; 2) и С (-1; 5; -3), лежащих в одной плоскости, найдём уравнение этой плоскости. Для этого составляем определитель: | x-(-3) 4-(-3) -1-(-3) | | y-2 -1-2 5-2 | = 0 | z-1 2-1 -3-1 |
Номер 463.
1) -7. Взять -7 мы можем, т.к. по условию оно нам подходит.
2) -4. Взять -3,7 не можем, т.к. нам по условию надо выбрать целое число.
3) 4. Взять 4,8 не можем, т.к. нам по условию надо выбрать целое число.
4) -6. Взять -5,6 не можем, т.к. нам по условию надо выбрать целое число.
Номере 464.
1) -11. Взять -11,9 не можем, т.к. нам по условию надо выбрать целое число.
2) -5. Взять -5,2 не можем, т.к. нам по условию надо выбрать целое число.
3) 9. Взять 8,1 не можем, т.к. нам по условию надо выбрать целое число.
4) -8. Взять -8,1 не можем, т.к. нам по условию надо выбрать целое число.