20(x²-6x-9)²=x(x²-4x-9)
(x²-6x-9)²-x(x²-4x-9)=0
(x²-6x)²-2(x²-6x)·9+9²-x³+4x²+9x=0
x⁴-12x³+36x²-18x²+108x+81-x³+4x²+9x=0
x⁴-13x³+22x²+117x+81=0
подставив вместо х=-1 убеждаемся, что 1+13+22-117+81=0 - верно
Значит х=-1 - корень данного уравнения
Делим x⁴-13x³+22x²+117x+81 на (х+1)
получим х³-14х²+36х+81
Итак,
x⁴-13x³+22x²+117x+81=(х+1)·(х³-14х²+36х+81)
корни многочлена
х³-14х²+36х+81
следует искать среди делителей свободного коэффициента 81
Это числа ±1;±3;±9
Подставим х=9 и убеждаемся, что 9³-14·9²+36·9+81=81(9-14+4+1)=81·0=0
х=9 - корень данного уравнения
х³-14х²+36х+81 делим на (х-9)
получим х²-5х-9
Осталось разложить на множители последнее выражение
х²-5х-9=0
D=25+36=61
x=(5-√61)/2 или х=(5+√61)/2
Окончательно
x⁴-13x³+22x²+117x+81=0 ⇒(х+1)·(х³-14х²+36х+81)=0⇒(х+1)(х-9)(х²-5х-9)=0⇒ х₁=-1 или х₂=9 или x₃=(5-√61)/2 или х₄=(5+√61)/2
Объяснение:
1) ac2-ad+c3-cd-bc2+bd= = (ac2 – ad) + (c3 –
bc2) + (bd – cd) = a·(c2 – d) + c2·(c – b) + d·(b – c) = a·(c2 – d) +
c2·(c – b) – d·(c – b) = a·(c2 – d) + c2·(c – b) – d·(c – b) = a·(c2 –
d) + (c – b)·(c2 – d) = (c2 – d)·(a + c – b)
2) mx2+my2-nx2-ny2+n-m= x2 ( m - n ) + y2 ( m - n ) - ( m - n ) = ( m-n ) (x2 + y2 - 1 )
3) am2+cm2-an+an2-cn+cn2= m2 (a + c ) + n2 ( a + c ) - n ( a + c ) = ( a+ c) ( m2 + n2 - n)
4) xy2-ny2-mx+mn+m2x-m2n= y2 ( x - n ) + m2 ( x - n) - m ( x - n ) = ( x-n) ( y2 + m2 - m )
5) a2b+a+ab2+b+2ab+2=ab ( a + b + 2 ) + ( a+ b+ 2 ) = 2 ( a+ b + 2 )
6) x2-xy+x-xy2+y3-y2= x ( x – y + 1) – y 2 ( x – y + 1)=( x – y + 1)( x – y 2 ).