М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
supersuperolga1
supersuperolga1
29.11.2020 11:40 •  Алгебра

При якому значенні в системі рівнянь має безліч розв'язків {4х+вх=10
{2х+3у=5​
варіанти відповідей
А)3
Б)6
В) якого значення не існує
Г)-6

👇
Открыть все ответы
Ответ:
gulkogulkovno
gulkogulkovno
29.11.2020

f(x) = x³ - 3x      [0 , 2]

Найдём производную :

f'(x) = (x³)' - 3(x)' = 3x² - 3

Найдём нули производной :

3x² - 3 = 0

3(x² - 1) = 0

x² - 1 = 0

x₁ = - 1      x₂ = 1

Только x = 1 ∈ [0 ; 2]

Определим знаки производной на отрезке [0 , 2] :

                               -                       +

[0][1][2]

                                         min

В точке x = 1 функция имеет минимум, который является наименьшим значением на заданном отрезке. Найдём это наименьшее значение :

f(1) = 1³ - 3 * 1 = 1 - 3 = - 2

Найдём значения функции на концах отрезка :

f(0) = 0³ - 3 * 0 = 0

f(2) = 2³ - 3 * 2 = 8 - 6 = 2

ответ : наименьшее значение равно - 2 ,  а наибольшее равно 2 .

4,8(95 оценок)
Ответ:
24556
24556
29.11.2020
y (x)= |2 - \sqrt{5 + |x| } | \\
областью определения y(x) будет x€R
(5+|x|>0 при любых x)

Теперь найдем множество значений, исходя из свойств модуля и квадратного корня
|x| \geqslant 0
5 + |x | \geqslant 5
\sqrt{5} \geqslant \sqrt{5 + |x| } \geqslant 0
2 - \sqrt{5 + |x|} \leqslant 2 - \sqrt{5}
y(x) = |2 - \sqrt{5 + |x|} | \geqslant \\ \geqslant | 2 - \sqrt{5} | = \sqrt{5} - 2 0
как мы видим нулей функции у(х) нет

теперь раскроем внутренний модуль,
а затем внешний

y (x)= |2 - \sqrt{5 + |x| } | \\ = \left \{ |{ 2 - \sqrt{5 + x} |} , x \geqslant 0 \atop |{2 - \sqrt{5 - x} | , \: x < 0} \right. = \\ = \left \{ { - 2 + \sqrt{5 + x} } , x \geqslant 0 \atop { - 2 + \sqrt{5 - x} , \: x < 0} \right.

внешний модуль раскрывается основываясь на сравнении значения квадратного корня и 2 при значениях х из заданных интервалов.

из вида функции и свойств квадратного корня мы видим , что
при х>0 функция возрастает
при х<0 функция убывает

причём минимум функции будет при х=0

y (0)= |2 - \sqrt{5 + |0| } | = \\ = \sqrt{5} - 2 \\

Функции , составляющие y(x)

y_1 = { - 2 + \sqrt{5 + x}} \\ y_2 = { - 2 + \sqrt{5 - x}}
строятся на основе функции
\sqrt{x}
соответствующими сдвигами вдоль осей ординат и абсцисс

Финальный график - см на фото

удачи!

Постройте график функции. укажите область определения, множество значений, промежутки монотонности,
4,7(95 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ