а)3(a-b)
б)20a²⁰b⁹
Объяснение:
а)(а/b-b/a)*(3ab)/(a+b)=
Сначала в скобках:
(а/b-b/a)
общий знаменатель аb, над числителями дополнительные множители:
(a*a-b*b)/ab=(a²-b²)/ab
Числитель распишем по формуле разности квадратов:
[(a-b)(a+b)]/ab;
Теперь умножение:
[(a-b)(a+b)]/ab * (3ab)/(a+b)=
числитель: [(a-b)(a+b)(3ab)]
знаменатель: (ab)(a+b)
сокращение ab и ab, (a+b) и (a+b)
=3(a-b)
в)(-2 и 1/2a³b)⁴*3 и 1/5a⁸b⁵=
переведём смешанные дроби в неправильные дроби для удобства вычислений:
=(-5/2a³b)⁴*16/5a⁸b⁵=
возведём первую скобку в четвёртую степень: (показатели степеней перемножаются)
=25/4a¹²b⁴
умножение:
=25/4a¹²b⁴*16/5a⁸b⁵=
числитель: 25a¹²b⁴*16a⁸b⁵
знаменатель:4*5
сокращение (деление) 16 и 4 на 4, 25 и 5 на 5
=5a¹²b⁴*4a⁸b⁵= степени складываются
=20a²⁰b⁹
t² -t -2 >0 ;
(t+1)(t -2) >0 ;
+ - +
(-1) 2
t∈( -∞ ; -1) U (2 ; ∞) . ⇒ cosx ∈ ( -∞ ; -1) U (2 ; ∞) невозможно .
ответ: x ∈ ∅ .
sin²x - 2sinx -3 < 0 ; замена sinx =t ; |t|≤1 * * *
t² -2t -3 < 0 ;
(t+1)(t -3) <0 ;
+ - +
(-1) 3
t∈( -1;3) ⇒ sinx ∈ ( -1; 3) учитывая что sinx ≤1 получается
sinx ∈ ( -1; 1] .
ответ: для всех x ≠ - π/2 +2πk , k∈Z.
x ∈ R \ {. -π/2 +2πk , k∈Z }