
Объяснение:
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
ПОСТАВЬ НА ОТВЕТ
1) Найди дискриминант квадратного уравнения 8x²+4x+12=0.
D = b² - 4ac = 16 - 4·8·12 = 16 - 384 = -368.
2) Найди корни квадратного уравнения x²+7x+12=0.
По т., обратной к т. Виетта, имеем х₁ = -4; x₂ = -3.
3) Реши квадратное уравнение 2(5x−15)²−7(5x−15)+6=0.
Рациональным будет метод введения новой переменной.
Пусть 5x−15 = t, тогда имеем:
2t²−7t+6=0; D = b² - 4ac = 49 - 4·2·6 = 49 - 48 = 1; √D = 1
t₁ = (7 + 1)/4 = 2; t₂ = (7 - 1)/4 = 1,5.
Возвращаемся к замене:
5x−15 =2; 5x = 2 + 15; 5x = 17; x = 17/5; x₁ = 3,4.
5x−15 = 1,5; 5x = 1,5 + 15; 5x = 16,5; x = 16,5/5; x₂ = 3,3.
ответ: 3,4; 3,3.
4)Найди корни уравнения −8,9(x−2,1)(x−31)=0.
x−2,1 = 0 или x−31 = 0.
х₁ = 2,1 х₂ = 31.
ответ: 2,1; 31.
5) Сократи дробь (x−4)²/(x²+2x−24) = (x−4)²/((x + 6)(x − 4)) = (х - 4)/(х + 6).
Полученная дробь: (х - 4)/(х + 6).
6)Сократи дробь (5x²−32x+12)/(x³−216).
5x²−32x+12 = 0; D = b² - 4ac = 1024 - 480 = 784; √D = 28.
x₁ = (32 + 28)/10 = 6; x₂ = (32 - 28)/10 = 0,4
Имеем: (5x²−32x+12)/(x³−216) = ((x - 6)(5x - 2))/((x - 6)(x² + 6x + 36)) =
= (5x - 2)/(x² + 6x + 36).
7) Разложи на множители квадратный трехчлен x² + 8x + 15.
x² + 8x + 15 = 0; x₁ = -3; x₂ = -5.
имеем, x² + 8x + 15 = (x + 3)(x + 5).