1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 1)^2*(x + 2) = 0 (x - 1)^2 = 0 x - 1 = 0 x = 1
x + 2 = 0 x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 1)(x - 3) = 0 x^2 = 1 x₁ = 1 x₂= - 1;
x - 3 = 0 x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 4)^2*(x - 3) = 0 x - 4 = 0 x = 4
x - 3 = 0 x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 4)(x + 1) = 0
Решите уравнение
1. sin²x - sin x = 0 ;
2. 2cos²x - sin x - 1 = 0 .
- - - - - - - - - - - - -
1.
sin²x - sin x =0 ⇔sinx(sinx - 1) =0 ⇔ [ sinx =0 ; sinx -1 =0 .( совокупность ур.)
а) sinx = 0 ⇒ x =πk , k∈ℤ .
б) sinx =1 ⇒ x =π/2+ 2πn , n∈ℤ .
- - -
2.
2cos²x - sin x - 1 = 0 ;
2(1 -sin²x) - sin x - 1 = 0 ;
2 -2sin²x - sin x - 1 = 0 ;
-2sin²x - sin x + 1 = 0 ;
2sin²x + sin x - 1 = 0 ;
sinx =(-1±√( (1 -4*2(-1) ) ) /2*2
а) sinx = (-1 -3) /4 = - 1 ⇒ x = -π/2 +2πk , k ∈ℤ ;
б) sinx = (-1 +3) /4 = 1/2 ⇒ x = (-1)ⁿπ/6 +πn , n ∈ℤ .