В решении.
Объяснение:
Моторная лодка против течения реки 308 км и вернулась в пункт отправления , затратив на обратный путь на 3 часа меньше , чем на путь против течения.
Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 3 км/ч .
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость лодки в неподвижной воде.
х + 3 - скорость лодки по течению.
х - 3 - скорость лодки против течения.
308/(х + 3) - время лодки по течению.
308/(х - 3) - время лодки против течения.
Разница во времени 3 часа, уравнение:
308/(х - 3) - 308/(х + 3) = 3
Умножить все части уравнения на (х - 3)(х + 3), чтобы избавиться от дробного выражения:
308*(х + 3) - 308*(х - 3) = 3(х - 3)(х + 3)
308х + 924 - 308х + 924 = 3х² - 27
1848 = 3х² - 27
-3х² = -27 - 1848
-3х² = -1875
х² = -1875/-3
х² = 625
х = √625
х = 25 (км/час) - скорость лодки в неподвижной воде.
Проверка:
308 : 22 = 14 (часов);
308 : 28 = 11 (часов);
14 - 11 = 3 (часа), верно.
1) x^2-y^2=9
x-y=1
1. x=1+y
2. (1+y)^2-y^2=9
1+2y+y^2-y^2=9
1+2y=9
2y=8
y=4
3. x=1+y. x=1+4=5
ответ: (5;4)
2 система:
1) x^2+y^2=13
xy=6
1. x=6/y
2. (6/y)^2 + y^2 = 13
36/y^2 + y^2 = 13 (обе части умножаем на y^2, y не равен нулю)
36+y^4 = 13y^2
y^4-13y^2+36=0
y^2=t
t^2-13t+36=0
D=25
t1=9
t2=4
y^2=9, y1=3, y2= - 3
y^2=4, y3=2, y4= - 2
3. x=6/y. x1=2, x2= -2, x3=3. x4= - 3.
ответ: (2;3) (-2;-3) (3;2) (-3;-2)