Рациональным числом называется такое число,которое не представляется в виде бесконечной периодической дроби. А вот иррациональное - бесконечная периодическая дробь. Иначе говоря,корень должен быть "тяжело извлекаем" в случае иррационального числа. Вот,например случай 2)-рациональное,очевидно,это 13. Рассмотрим случай 4).Переведём подкоренное в неправильную дробь - 25\4,корень извлекается,будет 5\2,следовательно,число рациональное. В случае 3) степень чётная,поэтому при перемножении можно убедиться,что число будет рациональным(целым здесь) Из 1,6 корень не извлечём. Хочется 4 приплести,да не выйдет. Не так давно объясняла другому человеку случай 4). Послушайте,если вам на экзамене попадутся десятичные дроби под корнями и потребуется выбрать рациональное число,берите ТО,У КОТОРОГО ПОСЛЕ ЗАПЯТОЙ ЧЁТНОЕ КОЛИЧЕСТВО ЗНАКОВ. Здесь 1 запятая после запятой.Случай 1 вылетает.
1.
Пусть первая бригада может выполнить работу за x дней ,тогда
вторая бригада может выполнить эту работу за 5x дней
За день
первая бригада выполнит 1/x часть работы ,
вторая бригада _ 1/5x часть работы ,
вместе_ (1/x +1/5x) часть работы.
можем написать уравнение
1/x +1/5x = 1/4 ⇒ x = 4, 8 (день) и 5*4,8 = 24 (день)
---
3.
Решите уравнение заменой переменных (x²-2x)²+12(x²-2x)+11=0.
замена t = x²- 2x
t² +12t +11=0 ; D₁ = (12/2)² -11 =6²- 11=25 =5²
t₁ = -6 -5 = -11 ⇒ x²-2x = -11 ⇔ x²-2x+11=0 ⇔(x-1)²+10=0 ⇒ x∈∅ .
t₂ = - 6 +5 = -1 ⇒ x²-2x = -1 ⇔ x²-2x+1=0 ⇔(x-1)²=0 ⇒ x=1 .
---
4.
Решить иррациональное уравнение √(2x²-3x+5)=√(x²+x+1)
ОДЗ : { 2x²- 3x+5 ≥ 0 , x²+x+1≥ 0 . ⇒ x ∈R .
* * * D(1) =3² - 4*2*5 = - 31 < 0 , a=2>0 и D(2) = (-1)² -4*1*1 = -3<0 * * *
2x²-3x+5= x²+x+1 ;
x² -4x +4 =0 ;
(x-2)² =0 ;
x=2 .