М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
25durak
25durak
15.02.2021 23:00 •  Алгебра

AB диаметр окружности с центром О. Найдите координаты центра окружности если A(8;7)и В (6;-1) b) Запишите уравнение окружности используя условия пункта а)
СОР РЕШИТЕ ​

👇
Открыть все ответы
Ответ:
Амир986
Амир986
15.02.2021

Нужно сравнить длины сторон треугольников

Для этого находим их по формуле расстояния между двумя точками

d=√((x2-x1)^2+(y2-y1)^2)

a)

AB=√((2+2)^2+(-1+1)^2)=√(16)=4

BC=√((-2-2)^2+(1+1)^2)=√(16+4)=√20

CA=√((-2+2)^2+(-1-1)^2)=√(4)=2

Стороны не равны, но сторона BC больше остальных, поэтому проверим выполняется ли на них теорема пифагора

(√20)^2=2^2+4^2

20=4+16

20=20

Теорема Пифагора выполняется, значит треугольник прямоугольный.

б)

AB=√((2+2)^2+(-2+2)^2)=√(16)=4

BC=√((0-2)^2+(1+2)^2)=√(4+9)=√13

CA=√((-2-0)^2+(-2-1)^2)=√(4+9)=√13

т.к. равны 2 стороны, то треугольник равнобедренный.

4,7(42 оценок)
Ответ:
Упс200
Упс200
15.02.2021

Используем метод неопределённых коэффициентов.Предположим, что левая часть уравнения разлагается на множители второй степени с целыми коэффициентами. Обозначим один из них черезx^2+px+q , другой - через x^2+rx+s.

Задача сводится к нахождению p, q, r, s. Тогда

x^4-2x^2-12x-8=(x^2+px+q)(x^2+rx+s)=0

\begin{cases} p+r=0\\q+s+pr=-2\\ps+qr=-12\\qs=-8 \end{cases}

Можно попробовать взять q=4, s=-2, тогда p=2, r=-2, а уравнение может быть представлено в виде:

 x^4-2x^2-12x-8=(x^2+2x+4)(x^2-2x-2)=0

x^2+2x+4=0  не имеет действительных корней, так как дискриминант меньше 0 (2^2-4*4=-12).

x^2-2x-2=0

x_1=(2+\sqrt{12})/2=1+\sqrt{3}

x_2=(2-\sqrt{12})/2=1-\sqrt{3}

Сумма корней: x_1+x_2=1+\sqrt{3}+1-\sqrt{3}=2

если взять q=-4, s=2, тогда p=-2, r=2, а уравнение может быть представлено в виде:

x^4-2x^2-12x-8=(x^2-2x-4)(x^2+2x+2)=0

x^2-2x-4=0

x_1=(2+\sqrt{20})/2=1+\sqrt{5}

x_2=(2-\sqrt{20})/2=1-\sqrt{5}

x^2+2x+2=0 не имеет действительных корней, так как дискриминант меньше 0 (2^2-4*2=-4).

Сумма корней: x_1+x_2=1+\sqrt{5}+1-\sqrt{5}=2

ответ: 2.

4,5(100 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ