М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ЛедиБанка
ЛедиБанка
29.07.2022 00:21 •  Алгебра

Ре­ши­те урав­не­ние 4x плюс 7=0.

👇
Ответ:
Rustem1112
Rustem1112
29.07.2022

4х+7=0

4х=-7

х=-1.75

Объяснение:

Незачто


Ре­ши­те урав­не­ние 4x плюс 7=0.
4,6(19 оценок)
Открыть все ответы
Ответ:
dmitry113114
dmitry113114
29.07.2022
х² - 3х + у²+ 3 > 0; поскольку число у, возведенное в квадрат больше (или равно при у=0) нуля, то есть число положительное при всех у, то рассмотрим неравенство: х² - 3х + 3 > 0; если оно будет верно, то и верно исходное неравенство х² - 3х + у²+ 3 > 0 x² − 3x + 3 > 0 Сначала решаем квадратное уравнение x² − 3x + 3 = 0. Вот коэффициенты данного квадратного уравнения: a = 1, b = − 3, c = 3. Его дискриминант D = b² − 4ac = (− 3) ² − 4 · 1 · 3 = − 3 Поскольку дискриминант D квадратного уравнения меньше 0, то уравнение не имеет действительных корней, и при любом x левая часть будет либо больше, либо меньше нуля; если a > 0, то при любом х всё выражение будет больше нуля; если a < 0, то при любом х всё выражение будет меньше нуля. В нашем уравнении a=1; > 0, поэтому выражение x² − 3x + 3 всегда будет больше нуля при любом x. Следовательно, наше неравенство x² − 3x + 3 > 0 верно при любом x.
4,7(43 оценок)
Ответ:
ASK231
ASK231
29.07.2022

Объяснение:

Линейное уравнение – уравнение, сводящееся к виду ax+b=0, где a≠0,b – числа. Линейное уравнение всегда имеет единственное решение x=−ba.   Квадратное уравнение – уравнение, сводящееся к виду ax2+bx+c=0, где a≠0,b,c – числа. Выражение D=b2−4ac называется дискриминантом квадратного уравнения. Квадратное уравнение может иметь не более двух корней:   ∙ если D>0, то оно имеет два различных корня и x1=−b+D2aиx2=−b−D2a ∙ если D=0, то оно имеет один корень (иногда говорят, что два совпадающих) x1=x2=−b2a ∙ если D<0, то оно не имеет корней.   ▸ Теорема Виета для квадратного уравнения:   Если квадратное уравнение имеет неотрицательный дискриминант, то сумма корней уравнения x1+x2=−ba а произведение x1⋅x2=ca ▸ Если квадратное уравнение:   ∼ имеет два корня x1 и x2, то ax2+bx+c=a(x−x1)(x−x2).   ∼ имеет один корень x1 (иногда говорят, что два совпадающих), то ax2+bx+c=a(x−x1)2.   ∼ не имеет корней, то квадратный трехчлен ax2+bc+c никогда не может быть равен нулю. Более того, он при всех x строго одного знака: либо положителен, либо отрицателен.   ▸ Полезные формулы сокращенного умножения:   x2−y2=(x−y)(x+y)(x+y)2=x2+2xy+y2(x−y)2=x2−2xy+y2 Ознакомиться с полной теорией

4,6(3 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ