М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
rar18
rar18
12.02.2022 03:11 •  Алгебра

2 вариант Задания
1. Укажите соответствующий вывод для каждого неравенства. Обоснуйте свой ответ.
а) ;
b) ;
c)х2-3х+2;
d)-х2+4.
1) Неравенство не имеет решений.
2) Решением неравенства является вся числовая прямая.
3) Решением неравенства является одна точка.
4) Решением неравенства является закрытый промежуток.
5) Решением неравенства является открытый промежуток.
6) Решением неравенства является объединение двух промежутков.

[8]

2. Неравенство имеет решение . Найдите значения a и b.
[2]

3. Решите систему неравенств:

[5]

4.Заполните таблицу:

Расстояние (км) Частота Накопленная частота
0 ≤ x < 5 19
5 ≤ x < 10 26
10 ≤ x < 15 75
15 ≤ x < 30 148
30 ≤ x < 50 32
5.Станок, на котором распиливают доски, испытывают раз в год. Для этого измеряют толщину полученной доски в пяти местах и вычисляют стандартное отклонение. Если стандартное отклонение превышает 0,22, то станок нуждается в ремонте. В таблице даны результаты измерений:

Номер измерения 1 2 3 4 5
Диаметр (мм) 18,1 18,5 18,5 18,6 18,3

Найдите:
a) среднее арифметическое измерений;
b) дисперсию измерений;
c) стандартное отклонение.

Критерий оценивания № задания Дескриптор
Обучающийся
Решает квадратные неравенства 1 определяет соответствующий вывод для неравенства, которое не имеет решений; 1
обосновывает свой вывод; 1
определяет соответствующий вывод для неравенства, решением которого является объединение двух промежутков; 1
обосновывает свой вывод; 1
определяет соответствующий вывод для неравенства, решением которого является вся числовая прямая; обосновывает свой вывод; 1
определяет соответствующий вывод для неравенства, решением которого является закрытый промежуток; обосновывает свой вывод; 1
Решает рациональные неравенства 2 находит значение параметра а; 1
находит значение параметра b; 1
Решает системы из двух неравенств, одно из которых линейное, а второе – квадратное 3 определяет метод решения первого неравенства; 1
решает первое неравенство; 1
решает второе неравенство; 1
изображает решения на числовой оси; 1
записывает ответ. 1
Применяет определение накопленной частоты. 2 находит искомые значения на первых двух интервалах; 1
находит искомые значения на остальных интервалах; 1
Вычисляет дисперсию и стандартное отклонение. 3 составляет выражение для нахождения среднего арифметического; 1
находит среднее арифметическое; 1
составляет выражение для нахождения дисперсии; 1
находит дисперсию; 1
находит стандартное отклонение; 1
Итого: 20

Суммативное оценивание за раздел
«Элементы статистики»
Тема Полигон частот, гистограмма частот
Среднее значение. Дисперсия. Стандартное отклонение

Цель обучения 8.3.3.1 Представлять результаты выборки в виде интервальной таблицы частот
8.3.3.3 Знать определение накопленной частоты
8.3.3.5 Знать определения и формулы для вычисления дисперсии и стандартного отклонения

Критерий оценивания Обучающийся
⦁ Представляет результаты выборки в виде интервальной таблицы частот
⦁ Применяет определение накопленной частоты
⦁ Вычисляет дисперсию и стандартное отклонение

Уровень мыслительных навыков Применение
Навыки высокого порядка
Время выполнения 20 минут

Задания
1. Продолжительность выполнения домашнего задания (в часах) по результатам опроса 30 учащихся приведена в таблице:

2,5 1,3 2,6 2,4 1,8 3,7 0,8 2,6 1,2 3,2
3,3 1,7 2,0 3,8 2,9 1,1 2,1 1,0 2,4 2,8
0,7 1,4 0,9 2,5 2,1 1,8 1,3 3,9 2,8 3,0

a) Представьте данные в виде интервальной таблицы частот с интервалом в 1 час.
b) Найдите процент учащихся, которые выполняют домашнее задание более трех часов.
[3]
2. Заполните таблицу:

Расстояние (км) Частота Накопленная частота
0 ≤ x < 5 19
5 ≤ x < 10 26
10 ≤ x < 15 75
15 ≤ x < 30 148
30 ≤ x < 50 32

[2]

3. Станок, на котором распиливают доски, испытывают раз в год. Для этого измеряют толщину полученной доски в пяти местах и вычисляют стандартное отклонение. Если стандартное отклонение превышает 0,22, то станок нуждается в ремонте. В таблице даны результаты измерений:

Номер измерения 1 2 3 4 5
Диаметр (мм) 18,1 18,5 18,5 18,6 18,3

Найдите:
a) среднее арифметическое измерений;
b) дисперсию измерений;
c) стандартное отклонение.
d) Определите, нуждается ли станок в ремонте.

Критерий оценивания № задания Дескриптор
Обучающийся
Представляет результаты выборки в виде интервальной таблицы частот. 1 записывает интервалы в таблице; 1
определяет частоты; 1
определяет требуемый процент учащихся; 1
Применяет определение накопленной частоты. 2 находит искомые значения на первых двух интервалах; 1
находит искомые значения на остальных интервалах; 1
Вычисляет дисперсию и стандартное отклонение. 3 составляет выражение для нахождения среднего арифметического; 1
находит среднее арифметическое; 1
составляет выражение для нахождения дисперсии; 1
находит дисперсию; 1
находит стандартное отклонение; 1
делает вывод о необходимости ремонта. 1
Итого: 11
ришите нужно

👇
Открыть все ответы
Ответ:
desna80
desna80
12.02.2022
рисуешь например первую прямую и в зависимости от неравенства то множество , которое тебе нужно находится либо сверзу , либо снизу (чтобы определить какое, можно подставить координаты 2 точек - сверху и снизу прямой - в неравенство и посмотреть, что подходит ), заштриховываешь это множество, потом проводишь вторую прямую и опять уже для этой прямой находишь подходящее множество - после этого надо посмотреть где у тебя эти два заштрихованных множества пересекаются - это и есть ответ для 2 прямых , если прямых больше, то опять как написано выше надо рисовать их по одной находить пересечения нового множества со старым и все)
4,8(9 оценок)
Ответ:
фейс4
фейс4
12.02.2022
Попробуем угадать формулу S(n) = 1 * 3 + 2 * 4 + 3 * 5 + ... + n * (n + 2). Понятно, что сумма - многочлен, притом не более чем третьей степени. 
Положим S(n) = an^3 + bn^2 + cn + d

S(1) = a + b + c + d = 3
S(2) = 8a + 4b + 2c + d = 3 + 8 = 11
S(3) = 27a + 9b + 3c + d = 11 + 15 = 26
S(4) = 64a + 16b + 4c + d = 26 + 24 = 50

a + b + c + d = 3
8a + 4b + 2c + d = 11
27a + 9b + 3c + d = 26
64a + 16b + 4c + d = 50

Вычитаем первое уравнение из оставшихся.
7a + 3b + c = 8
26a + 8b + 2c = 23
63a + 15b + 3c = 47

Вычитаем из второго уравнения удвоенное первое, а из третьего - утроенное.
12a + 2b = 7
42a + 6b = 23

6a + b = 7/2
7a + b = 23/6

Вычитаем из второго уравнения первого, получаем
a = 23/6 - 7/2 = 1/3

Тогда
b = 7/2 - 6a = 7/2 - 2 = 3/2
c = 8 - 7a - 3b = 8 - 7/3 - 9/2 = 7/6
d = 3 - a - b - c = 3 - 1/3 - 3/2 - 7/6 = 0

(?) S(n) = (2n^3 + 9n^2 + 7n)/6

Проверяем:
S(1) = (2 + 9 + 7)/6 = 3
S(2) = (16 + 36 + 14)/6 = 11
S(3) = (54 + 81 + 21)/6 = 26
S(4) = (128 + 144 + 28)/6 = 50

Вроде совпадает. Проверяем по индукции.
База уже проверена.
Переход: Пусть S(n) = (2n^3 + 9n^2 + 7n)/6. Найдем S(n+1).
S(n + 1) = (2n^3 + 9n^2 + 7n)/6 + (n + 1) * (n + 3) = (2n^3 + 9n^2 + 7n + 6n^2 + 24n + 18)/6 = (2(n^3 + 3n^2 + 3n + 1) + 9(n^2 + 2n + 1) + 7(n + 1))/6 = (2(n + 1)^3 + 9(n + 1)^2 + 7(n + 1))/6, чтд.

Решение станет проще, если сразу вспомнить две формулы:
1 + 2 + ,,, + n = n(n + 1)/2
1 + 4 + ... + n^2 = n(n + 1)(2n + 1)/6

Тогда
1 * 3 + 2 * 4 + ... + n(n + 2) = (1 + 2 + ... + n^2) + 2(1 + 2 + ... + n) = n(n + 1) * [(2n + 1)/6 + 2 * 1/2] = n(n + 1)(2n + 7) / 6 - как и было получено ранее.


S(15) = 15 * 16 * 37 / 6 = 5 * 8 * 37 = 40 * 37 = 1480
4,4(18 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ