Андреев сказал : убирал 9кл, Савельвев - 7
Костин сказал: убирал 9 кл., Андреев - 8
Савельев сказал: убирал 8кл, Костин - 10
Допустим, что Андреев сказал правду, что убирал 9 кл, тогда Савельев не убирал 7кл.
Костин убирал 9 кл. - неправда, т.к. Андреев убирал 9кл, значит Андреев убирал 8 класс.
Пришли к противоречию, Андреев не мог убирать 9 и 8 кл.
Следовательно, допущение, что Андреев сказал правду, что убирал 9 кл - неверно.
Следовательно, правда то, что Андреев не убирал 9кл. Зачит Савельев убирал 7 кл.
Рассмотрим высказывание Костина. Андреев убирал 8 кл - неверно, т.к. Андреев убирал 9кл. Значит верно то, что Костин убирал 9 кл.
В высказывании Савельева неправда то, что Костин убирал 10 класс, значит Савельев убирал 8 кл - правда
Остается только то, что Давыдов убирал 10 кл, что можно было предположить, потому что он ушел домой раньше всех)
1.
a)
x² + 4x + 10 ≥ 0
Рассмотрим функцию у = x² + 4x + 10.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² + 4x + 10 = 0
D = 16 - 40 = - 24 < 0
нулей нет, значит график не пересекает ось Ох.
Схематически график изображен на рис. 1.
у > 0 при x ∈ (- ∞; + ∞)
ответ: 2) Решением неравенства является вся числовая прямая.
b)
- x² + 10x - 25 > 0 | · (- 1)
x² - 10x + 25 < 0
Рассмотрим функцию у = x² - 10x + 25.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² - 10x + 25 = 0
(x - 5)² = 0
x = 5
Схематически график изображен на рис. 2.
у < 0 при x ∈ {∅}
ответ: 1) Неравенство не имеет решений.
c)
x² + 3x + 2 ≤ 0
Рассмотрим функцию у = x² + 3x + 2.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² + 3x + 2 = 0
D = 9 - 8 = 1
Схематически график изображен на рис. 3.
у ≤ 0 при x ∈ [- 2; - 1]
ответ: 4) Решением неравенства является закрытый промежуток.
d)
- x² + 4 < 0 | · (- 1)
x² - 4 > 0
Рассмотрим функцию у = x² - 4.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² - 4 = 0
x² = 4
x = ± 2
Схематически график изображен на рис. 4.
у > 0 при x ∈ (- ∞; - 2) ∪ (2; + ∞)
ответ: 6) Решением неравенства является объединение двух промежутков.
___________________________
2.
(x - a)(2x - 1)(x + b) > 0
x ∈(- 4; 1/2) ∪ (5; + ∞)
Решение неравенства показано на рис. 5.
Найдем нули функции у = (x - a)(2x - 1)(x + b).
(x - a)(2x - 1)(x + b) = 0
(x - a) = 0 или (2x - 1) = 0 или (x + b) = 0
x = a x = 1/2 x = - b
Из решения неравенства следует, что нулями являются числа - 4, 1/2 и 5. Значит
или
или
ответ: a = - 4, b = - 5 или a = 5, b = 4.