М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Язиля111
Язиля111
20.06.2022 09:42 •  Алгебра

№1(б) при каких значениях переменных алгебраическая дробь не имеет смысла? 1)(b + 3)/(b^2+4)
2) (9-m ^3)/(25-m^2)
Верных ответов: 3
+2
+3
+9
+5
нет такого значения
любое число
-5
-2
-3
-9​

👇
Открыть все ответы
Ответ:
igrotron
igrotron
20.06.2022

1) Сравниваем соотношение сахара и воды в обоих случаях.

В первом: 120/500 = 0,24 гр сахара на грамм воды;

во втором: 180/700 = 0,257 гр сахара на грамм воды.

То есть во втором случае содержание сахара выше, стало быть вода будет слаще.

2) Длина комнаты будет равна 3 * 5 : 4 = 3,75 метра.

Площадь всей комнаты = (длина) * (ширина) = 3,75 * 3 = 11,25 м^2

3) Вложили 1578 рублей. Через год будет на 7% больше, то есть 107%.

Тогда 1578 * 1,07 = 1688 рублей 46 копеек

4) 65 мальчиков + 55 девочек = 120 человек всего.

Тогда соотношение мальчиков будет 65/120 = 0,5416(6), то есть примерно 54%.

5) Если 5% от всех учащихся равно 15 человек, тогда всего учащихся 15/0,05 = 300 человек

4,7(17 оценок)
Ответ:
1) а) По свойству \log_\big{a^k}b=\dfrac{1}{k}\log_ab имеем , что 
\log_\big{ \frac{1}{2} }16=\log_\big{2^{-1}}16=-\log_\big{2}16=-\log_\big{2}2^\big{4}=-4

б) Используя свойство \log_ab+\log_ac=\log_a(b\cdot c), получим что
51+\log53=\log10^{51}+\log53=\log(53\cdot 10^{51})

в) \log_335-\log_320+2\log_36=\log_3 \dfrac{35}{20} +\log_336=\log_3 \dfrac{35\cdot 36}{20} =\log_363

Задание 2. Сравнить числа: \log_\big{ \frac{1}{2} } \dfrac{3}{4} и \log_\big{ \frac{1}{2} } \dfrac{4}{5}

Поскольку \dfrac{3}{4} \ \textless \ \dfrac{4}{5}, то в силу монотонности функции(0\ \textless \ \dfrac{1}{2} \ \textless \ 1 функция убывающая) имеем что 
\log_\big{ \frac{1}{2} } \dfrac{3}{4}\ \textgreater \ \log_\big{ \frac{1}{2} } \dfrac{4}{5}

Задание 3. Решить уравнение \log_5(2x-1)=2
ОДЗ уравнения: 2x-1\ \textgreater \ 0  откуда   x\ \textgreater \ 0.5
\log_5(2x-1)=\log_55^2\\ 2x-1=25\\ 2x=26\\ x=13

Задание 4. Решить неравенство \log_\big{ \frac{1}{3} }(x-5)\ \textgreater \ 1
ОДЗ: x-5\ \textgreater \ 0 откуда x\ \textgreater \ 5
\log_\big{ \frac{1}{3} }(x-5)\ \textgreater \ \log_\big{ \frac{1}{3} } \dfrac{1}{3}
Поскольку основание 0\ \textless \ \dfrac{1}{3} \ \textless \ 1, функция убывающая, то знак неравенства меняется на противоположный
x-5\ \textless \ \dfrac{1}{3} \\ \\ x\ \textless \ \dfrac{16}{3}

С учетом ОДЗ получим окончательный ответ x \in \bigg(5; \dfrac{16}{3}\bigg)

Задание 5. Решить уравнение \log_8x+\log_{ \sqrt{2} }x=14
ОДЗ уравнения x\ \textgreater \ 0
Используя свойство \log_\big{a^k}b=\dfrac{1}{k}\log_ab, получим что
\log_\big{2^3}x+\log_\big{2^{1/2}}x=14\\ \\ \dfrac{1}{3} \log_2x+2\log_2x=14~~|\cdot 3\\ \\ \log_2x+6\log_2x=14\cdot 3\\ \\ 7\log_2x=14\cdot 3~~|:7\\ \\ \log_2x=6\\ \\ x=2^6

Задание 6. Решить неравенство \log_\big{ \frac{1}{6} }(10-x)+\log_\big{ \frac{1}{6} }(x-3)\geq -1
ОДЗ \displaystyle \left \{ {{10-x\ \textgreater \ 0} \atop {x-3\ \textgreater \ 0}} \right. ~~\Rightarrow~~~ \left \{ {{x\ \textless \ 10} \atop {x\ \textgreater \ 3}} \right. ~~~~\Rightarrow~~~ \boxed{x\in (3;10)}

\log_\big{ \frac{1}{6} }((10-x)(x-3))\geq -1\\ \\ \log_\big{ \frac{1}{6} }(-x^2+13x-30)\geq \log_\big{ \frac{1}{6} }6
В силу монотонности функции логарифма имеем что
  -x^2+13x-30\leq 6\\ -x^2+13x-36\leq 0~~|\cdot(-1)\\ x^2-13x+36\geq 0
(x-4)(x-9)\geq 0      (*)
  Решением последнего неравенства (*) есть x \in (-\infty;4]\cup[9;+\infty)

С учетом ОДЗ x \in [9;10) - ОТВЕТ.

Задание 7. Решить неравенство \log_3^2x-2\log_3x \leq 3
ОДЗ неравенства x\ \textgreater \ 0
Представим левую часть неравенства в следующем виде:
  \log_3^2x-2\log_3x+1\leq 4\\ \\ (\log_3x-1)^2\leq 4\\ \\ |\log_3x-1|\leq 2\\ \\ -2\leq \log_3-1\leq 2~~|+1\\ \\ -1\leq \log_3x\leq 3

Имеем совокупность неравенств \left[\begin{array}{ccc}\log_3x\geq -1\\ \log_3x\leq 3\end{array}\right~~~\Rightarrow~~~~~ \left[\begin{array}{ccc}x \geq \dfrac{1}{3}\\ x\leq 27 \end{array}\right

И с учетом ОДЗ мы получим ответ x \in \bigg[\dfrac{1}{3} ;27\bigg].
4,5(43 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ