Чтобы уметь выражать косинус через синус с формул приведения, сначала нужно разобраться с этими формулами. Их довольно много, вот парочка из них: sin(90-a)=cosa sin(180+a)=-sina cos(270+a)=sina cos(360+a)=cosa Именно этими углами(90(π/2) , 180(π), 270(3π/2), 360(2π)) мы пользуемся в формулах приведения. И ещё одно, угол a∈(0;90). Но чтобы их все не запоминать, нужно запомнить закон с которого можно вывести любую из них. Итак нужно запомнить в каких четвертях cos, sin, tg, ctg положительны или отрицательны. Всё это есть во вложении. Легче запомнить если кое что уяснить sin положителен когда положительна ось ординат(её часто обозначают y), cos - когда положительная ось абсцисс(x), tg и ctg (это sin/cos(cos/sin)) поэтому они положительны когда одновременно положительны или отрицательны cos и sin. С этим вроде бы разобрались. Теперь ещё один закон: при углах 90 и 270 функция изменяется на кофункцию. при углах 180 и 360 функция не изменяется. Изменение на кофункцию - замена косинуса синусом(и наоборот) и замена тангенса котангенсом(и наоборот).
Теперь попробуем решить ваш пример: cos(π/9) нам нужно заменить на sin. Вспомним что при углах π/2 и 3π/2 функция изменяется на кофункцию, поэтому представим π/9 в виде суммы(разности) с одним из этих углов: π/2=9π/18 π/9=2π/18=9π/18 - 7π/18 cos(π/9)=cos(π/2 - 7π/18)=[π/2 - 7π/18 это 1 четверть, cos в ней положителен, знак при замене не меняется]=sin(7π/18). Будут вопросы - спрашивайте.
Объяснение:
1).
а). 5·(a-3) = 5a-15.
б). а•(5+2а) = 2a²+5a.
в). 0,3х (2х-7) = 0,6x²-2,1x.
г). -0,2х (5х-4) = -1x²+0,8x.
д). 2а•(а²-5а+9) = 2a³-10a²+18a.
е). 3а²/(7-6а+5а) = 3а²/7-a.
ж). -5х (0,2х-4) = -1x²+20x.
з). 4х (3-2х)+3(2х²-х)-(х-3) = -2x²+8x-3.
2).
а). (а+5)•(3а+1) = 3a²+16a+5.
б). (х-5)•(2х-3) = 2x²-13x+15.
в). (2-х)•(х-1)+(х+1)•(х+2) = 3x²+x+2.
г). (3х+3)•(5-х)-(5х-5)•(3х-2) = -18x²-13x+25.
3).
а). 2х-12. Вынесем 2 за скобки и получим: 2(x-6).
б). 7х-14х². Вынесем за скобки 7x и получим: 7x(1-2x).
в). 5х²-10х+15. (Насколько вы понимаете, мы опять будем что то выносить за скобки.) 5(x²-2x+3).
г). 6х³-12х²+18х. Нетрудно догадаться что мы сейчас сделаем. 6x(x²-2x+3).
д). 4•(х-1)-х(х-1). На этом пункте мы вынесем за скобку (х-1) и получим: (x-1)·(4-x).
е). 3•(х-3)+х(3-х). Без комментариев. (x-3)·(3+x).
ж) х³+6х²-3х-18. этот пример мы разобьём на две скобки:
(х³+6х²)+(-3х-18) = x²(x+6)-3(x+6) = (x+6)·(x²-3).
з). х³-5х²-5х+25 = (х³-5х²)+(-5х+25) = x²(x-5)-5(x-5) = (x-5)·(x²-5).