М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MartynaEvgeneva
MartynaEvgeneva
21.06.2021 18:16 •  Алгебра

3. Найдите значение выражения при d=30​


3. Найдите значение выражения при d=30​

👇
Открыть все ответы
Ответ:
nadiksmarschool
nadiksmarschool
21.06.2021
1) (второе умножу на 2) складываю левые и правые части
х+2х+4у-4у=7+14  -> 3x=21 -> x=7  в любое (1) 4у=7-х -> y=(7-x)/4=(7-7)/4=0

2) (первое умножу на 2) 
6х+2у+х-2у=14+8  ->7x=22 -> x=22/7  в любое (1) у=7-3х=7-3*22/7=(49-66)/7=-17/7

3) (второе на 2)
2х-у-2х+4у=8+10  -> 3y=18 y=6 (во второе например) 2у-5=х х=2*6-5=12-5=7

4)Первое умножу на -1
-х-2у-3х+2у=5+5   -4х=10 х=-2,5  в первое например 2у=-1-х  у=(-1-х)/2=(-1+2,5)/2=0,75

5)второе напрмер на -1
х-3у-2х+3у=6-4   -х=2 х=-2 например в первое 3у=х+6 ->  y=(x+6)/3=(-2+6)/3=4/3
4,5(76 оценок)
Ответ:
leralerochka202
leralerochka202
21.06.2021
ax^2+x=a-1
\\\
ax^2+x+1-a=0
Рассмотрим случай когда уравнение не квадратное, то есть а=0:
0+x=0-1
\\\
x=-1
Значит, при а=0, х=-1
Если уравнение квадратное (а≠0), то:
ax^2+x+1-a=0
\\\
D=1^2-4a(1-a)=1-4a+4a^2=(2a-1)^2
Дискриминант неотрицательный, значит уравнение всегда имеет 1 или 2 корня.
Если D=0, то:
(2a-1)^2=0
\\\
2a-1=0
\\\
a= \frac{1}{2}
При а=1/2 исходное уравнение принимает вид:
\frac{1}{2} x^2+x=\frac{1}{2} -1
\\\
 x^2+2x=1 -2
\\\
x^2+2x+1=0
\\\
(x+1)^2=0
\\\
x+1=0
\\\
x=-1
Значит, при а=1/2, х=-1
Если D>0, то:
(2a-1)^2\ \textgreater \ 0 \\\ a\in(-\infty;0)\cup(0; \frac{1}{2} );\cup (\frac{1}{2};+\infty)
\\\
x= \frac{-1\pm(2a-1)}{a} 
\\\
x_1= \frac{-1-(2a-1)}{2a} = \frac{-1-2a+1}{2a} = \frac{-2a}{2a} =-1
\\\
x_2= \frac{-1+(2a-1)}{2a} = \frac{-1+2a-1}{2a} = \frac{2a-2}{2a} = \frac{a-1}{a}
ответ:
при a\in\{0; \frac{1}{2} \} уравнение имеет один корень: х=-1
при a\in(-\infty;0)\cup(0; \frac{1}{2} );\cup (\frac{1}{2};+\infty) уравнение имеет два корня: x₁=-1; x₂=(a-1)/a

ax^2+1=x+a \\\ ax^2-x+1-a=0
Рассмотрим случай когда уравнение не квадратное, то есть а=0:
0+1=x+0 \\\ x=1
Значит, при а=0, х=1
Если уравнение квадратное (а≠0), то:
ax^2-x+1-a=0 \\\ D=(-1)^2-4a(1-a)=1-4a+4a^2=(2a-1)^2
Дискриминант неотрицательный, значит уравнение всегда имеет 1 или 2 корня.
Если D=0, то:
(2a-1)^2=0 \\\ 2a-1=0 \\\ a= \frac{1}{2}
При а=1/2 уравнение имеет один корень::
x= \frac{1+0}{2a} = \frac{1}{2\cdot \frac{1}{2} } =1
Значит, при а=1/2, х=1
Если D>0, то:
(2a-1)^2\ \textgreater \ 0 \\\ a\in(-\infty;0)\cup(0; \frac{1}{2} );\cup (\frac{1}{2};+\infty) \\\ x= \frac{1\pm(2a-1)}{a} \\\ x_1= \frac{1+(2a-1)}{2a} = \frac{1+2a-1}{2a} = \frac{2a}{2a} =1 \\\ x_2= \frac{1-(2a-1)}{2a} = \frac{1-2a+1}{2a} = \frac{2-2a}{2a} = \frac{1-a}{a}
ответ:
при a\in\{0; \frac{1}{2} \} уравнение имеет один корень: х=1
при a\in(-\infty;0)\cup(0; \frac{1}{2} );\cup (\frac{1}{2};+\infty) уравнение имеет два корня: x₁=1; x₂=(1-a)/a
4,4(19 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ