Пусть скорость третьего атомобиля равна х км\час, за час первый автомобиль км, второй разница скоростей третьего и первого автомобиля равна (x-80) км\час, третий автомобиль догнал первый за 80/(x-80) час. За время от начала движения второй автомобиль проехал (80/(x-80)+1)*100=8000/(x-80)+100 км, расстояние от второго автомобиля до третьего равно 8000/(x-80)+100 -80/(x-80)*x км, разница скоростей третьего и второго автомобилей равна (х-100) км\час, по условию задачи третйи автомобиль догонит третий за (составляем уравненение)
(8000/(x-80)+100 -80х/(x-80)) :(x-100)=3
8000+100(х-80)-80х=3(x-80)(x-100)
8000+100x-8000-80x=3(x^2-180x+8000)
20x=3x^2-540x+24000
3x^2-560x+24000=0
D=25 600=160^2
x1=(560-160)/(2*3)<80 - не подходит условию задачи (скорость третьего автомобиля не может быть меньшей за скорость второго , меньшей за скорость первого)
x2=(560+160)/(2*3)=120
х=120
ответ:120 км\час
y = 7x - 6sinx + 8
y' = 7 - 6cosx
7 - 6cosx = 0
6cosx = 7
cosx = 7/6, 7/6 больше 1, поэтому корней нет
Раз критических точек нет, то подставляем только границы промежутка:
y(-π/2) = 7*(-π/2) - 6sin(-π/2) + 8 = -7π/2 + 6 + 8 = -7π/2 + 14 = (28-7π)/2
y(0) = 7*0 + sin0 + 8 = 8
Сравним 8 и (28-7π)/2, чтобы определить наибольшее значение:
8 - (28-7π)/2 = (16 - 28 + 7π)/2 = (7π - 12)/2 ≈ (21 - 12)/2 = 9/2 > 0
8 - (28-7π)/2 > 0
8 > (28-7π)/2
ответ: наибольшее значение функции y = 7x - 6sinx + 8 на отрезке [-π/2; 0] равно 8