Два пешехода одновременно вышли навстречу друг другу из пунктов А и В. После их встречи первый пришел к месту назначения через 16 минут, а второй – через 9 минут. Сколько времени потребовалось каждому для прохождения всего пути между А и В?
можно банально вычитать из первого члена прогрессии (a1) разность (d) до тех пор пока не дойдешь до тех членов, которые спрашивают (если дойдешь), но так не интересно, поэтому есть
an = a1+(n-1)d
a1 - первый член прогрессии
d - разность между членами прогрессии
an - n-ый член прогрессии
n - номер члена прогрессии
n принадлежит z, что значить номер прогрессии - целое число.
поэтому, если получится целое число в итоге, то член существует, иначе нет.
Решаем:
а) 2,5
an = a1+(n-1)d
an = 2,5
a1 = 17,5
d = -1,5
n - ?
выразим n:
n = (an - a1 + d)/d
n = (2,5 - 17,5 -1,5)/(-1,5) = -16,5/(-1,5) = 11
целое число получилось => есть в прогрессии (под номером 11)
б) -6
n = (-6-17,5-1,5)(-1,5) = -25/(-1,5) = 16 2/3
получилось дробное число, поэтому -6 не является членом арифметической прогрессии
Построим высоту СН к стороне АВ. в прямоугольном треугольнике СВН угол В = 45 градусов (по условию), тогда угол ВСН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = СН. известно, что ВС = 6, пусть АН = ВН = х, тогда по теореме Пифагора ВС^2 = ВН^2 + СН^2 36 = х^2 + x^2; 36 = 2x^2; x^2 = 18; х = корень из 18;
треугольник АНС - прямоугольный. угол А = 60 градусов (по условию), тогда угол НСА = 90 - 60 = 30 градусов. пусть АС = 2х, тогда АН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы). по теореме Пифагора АС^2 = АН^2 + НС^2 4х^2 = 18 + х^2; 4х^2 - х^2 = 18; 3х^2 = 18; х^2 = 6; х = корень из 6; тогда Ас = 2х = 2 корня из 6 ответ: 2 корня из 6
а) да; б) нет
Объяснение:
можно банально вычитать из первого члена прогрессии (a1) разность (d) до тех пор пока не дойдешь до тех членов, которые спрашивают (если дойдешь), но так не интересно, поэтому есть
an = a1+(n-1)d
a1 - первый член прогрессии
d - разность между членами прогрессии
an - n-ый член прогрессии
n - номер члена прогрессии
n принадлежит z, что значить номер прогрессии - целое число.
поэтому, если получится целое число в итоге, то член существует, иначе нет.
Решаем:
а) 2,5
an = a1+(n-1)d
an = 2,5
a1 = 17,5
d = -1,5
n - ?
выразим n:
n = (an - a1 + d)/d
n = (2,5 - 17,5 -1,5)/(-1,5) = -16,5/(-1,5) = 11
целое число получилось => есть в прогрессии (под номером 11)
б) -6
n = (-6-17,5-1,5)(-1,5) = -25/(-1,5) = 16 2/3
получилось дробное число, поэтому -6 не является членом арифметической прогрессии