Рассмотрим несколько случаем. На месте четной цифры мы будем писать Ч, на месте нечетной - Н. Тот факт, что число нечетное, означает, что последняя цифра у числа нечетная.
1) Число имеет вид ЧЧН. Поскольку на первом месте не может стоять 0, на первое место претендуют 3 цифры - 2, 4, 6. На второе место претендуют 4 цифры - 0, 2, 4, 6 (а если цифры не должны повторяться, то 3 цифры). На третье место претендуют 4 цифры - 3, 5, 7, 9.
Всего получается 3·4·4=48 чисел (при второй интерпретации условия 3·3·4=36 чисел).
2) ЧНН. Здесь аналогично получается 3·4·4=48 чисел (или 3·4·3=36).
3) НЧН. Здесь 4·4·4=64 чисел (или 4·4·3=48).
4) ННН. Здесь 4·4·4=64 числа (или 4·3·2=24)
Суммарно получаем 48+48+64+64=224 чисел - если повторения цифр допускаются (или 36+36+48+24= 144 чисел если все цифры должны быть разные).
Замечание. Если цифры могут совпадать, задачу можно сделать проще . На первом место может стоять любая из цифр, кроме 0 - всего 7 вариантов. На втором месте может стоять любая цифра - всего 8 вариантов. На третьем месте может стоять любая из нечетная цифра - 4 варианта. Всего получаем 7·8·4=224 числа.
ответ: 224 чисел, в которых возможно совпадение цифр, и 144 числа, в которых все цифры разные.
Ну
указывает на то, что надо бы производную брать для исследования этой функции, ибо она красивая получается.
Далее, для исследования исходной функции на возрастание/убывание необходимо найти нули производной, то есть![f'(x)=0;](/tpl/images/0725/1569/e89fa.png)
Сумма коэффициентов в уравнении равно 0, значит, x=1 - корень
Попробуем разложить выражение, заранее зная корень.
Теперь нужно проанализировать правую скобку![x^3+x+2=0;](/tpl/images/0725/1569/58ed4.png)
Сумма коэффициентов при четных (2) и нечетных (1+1=2) степенях равна, значит, x=-1 - корень.![x^3+x+2=x^3+x^2-x^2-x+2x+2=x^2(x+1)-x(x+1)+2(x+1)=\\ =(x+1)(x^2-x+2)](/tpl/images/0725/1569/c38ce.png)
Осталась последняя скобка в разложении, найдем дискриминант уравнения
Итоговое разложение![f'(x)=(x-1)(x+1)(x^2-x+2)](/tpl/images/0725/1569/9c689.png)
Нули производной известны, это![x=\pm1](/tpl/images/0725/1569/c107b.png)
Везде при х коэффициент равен 1 (у правой скобки нет нулей, её мы считаем просто каким-то положительным числом), значит, в самом правом промежутке "+", а дальше чередование.
Имеем при
возрастание
, а при
убывание
,
Убывание должно быть на интервале
, поэтому если параметр захватит точки экстремума - ничего страшного, интервал как раз не включает концы.
С одной стороны,
, как раз при
убывание на
выполняется.
С другой стороны,
, при
убывание продолжается вплоть до x=1, не включая эту точку.
Объединяя наши условия, получаем![$1\leq a\leq \frac{2}{3} \Rightarrow a\in[1;\frac{2}{3}]](/tpl/images/0725/1569/fb3d8.png)
ответ:![\boxed {a\in[1;\frac{2}{3}]}](/tpl/images/0725/1569/80e87.png)