Из первого равенства очевидным образом следуют неравенства Отсюда легко убедиться в справедливости неравенства под номером 2. Для этого достаточно обе части неравенства возвести в квадрат, получив, , что и требовалось проверить.
Первое неравенство можно проверить, например, следующим образом. Представим первое равенство следующим образом: Поскольку x > 0, y > 0, то 2xy > 0, а 1 + 2xy > 1. Значит, и Поскольку x + y > 0, то из последнего неравенства следует неравенство x + y > 1, что и требовалось доказать.
Последние два неравенства неверные. Сначала заметим, что из неравенства , следует, что 0 <x < 1, 0 < y < 1 Можно доказать, что куб таких чисел меньше квадрата, в третьем же неравенстве наоборот всё. Аналогично, куб числа от 0 до единицы всегда меньше самого числа. Эти утверждения очевидны. Поэтому неравенства 3 и 4 неверны. Выбрать какой-то один вариант тут не получится.
Из первого равенства очевидным образом следуют неравенства Отсюда легко убедиться в справедливости неравенства под номером 2. Для этого достаточно обе части неравенства возвести в квадрат, получив, , что и требовалось проверить.
Первое неравенство можно проверить, например, следующим образом. Представим первое равенство следующим образом: Поскольку x > 0, y > 0, то 2xy > 0, а 1 + 2xy > 1. Значит, и Поскольку x + y > 0, то из последнего неравенства следует неравенство x + y > 1, что и требовалось доказать.
Последние два неравенства неверные. Сначала заметим, что из неравенства , следует, что 0 <x < 1, 0 < y < 1 Можно доказать, что куб таких чисел меньше квадрата, в третьем же неравенстве наоборот всё. Аналогично, куб числа от 0 до единицы всегда меньше самого числа. Эти утверждения очевидны. Поэтому неравенства 3 и 4 неверны. Выбрать какой-то один вариант тут не получится.
Сторона 1=8 см
Сторона 2=11 см
Объяснение:
Пускай одна из сторон(меньшая) -- х, а дргая (х+3), тогда уравнение
х(х+3)=88
х^2+3х=88
x^2+3х-88+0
Решаем квадратное уравнение:
х=-11, х=8
х=-11 -- не подходит по условию(сторона не можнт быть -11)
Сторона 1=8 см
Сторона 2=11 см
как-то так:')