Пусть большее число будет x, числа последовательны,тогда второе число будет( x-1), а третье x-2. Составим уравнение:
x^2-(x-1)*(x-2)=19
x^2-x^4+2x^2+x^2-2=19
x^4-4x^2+21=0
Решим бинарное уравнение: заменим x^2 на у: получим квадратное уравнение: y^2-4y+21=0
Так как |а| =1 , то решаем по теореме Виета:{y1+y2=4
{y1*y2=21>y1=-3,y2=7
Следовательно y=-3(не подходит, так как квадрат числа не может быть отрицательным>x=7-большее число: x-1=7-1=6-второе число, x-2=7-2=5- третье число.
ответ: это числа 5,6 и 7
Пусть большее число будет x, числа последовательны,тогда второе число будет( x-1), а третье x-2. Составим уравнение:
x^2-(x-1)*(x-2)=19
x^2-x^4+2x^2+x^2-2=19
x^4-4x^2+21=0
Решим бинарное уравнение: заменим x^2 на у: получим квадратное уравнение: y^2-4y+21=0
Так как |а| =1 , то решаем по теореме Виета:{y1+y2=4
{y1*y2=21>y1=-3,y2=7
Следовательно y=-3(не подходит, так как квадрат числа не может быть отрицательным>x=7-большее число: x-1=7-1=6-второе число, x-2=7-2=5- третье число.
ответ: это числа 5,6 и 7
х вершины можно найти по формуле -b/(2a) =-2/2=-1
у вершины
можно найти по формуле -ах(вершины)^2+c или в уравнении вместо х поставить х вершины т.е (-1)^2 + 2(-1) - 10=1-2-10=-11
координаты вершины параболы (-1;-11)
далее решаем квадратное уравнение y = х^2 + 2x - 10
х1 приближенно равен -4.3
х2 приближенно равен 2.3
значит вторые координаты (-4.3;0)и(2,3;0)
(0;-10)