x=125 (детский)
y=190 (взрослый)
объяснение:
2х+y=440;
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим:
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим: 3x+2(440-2x)=755
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим: 3x+2(440-2x)=7553x+880-4x+755
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим: 3x+2(440-2x)=7553x+880-4x+755-3x+4x=-755+880
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим: 3x+2(440-2x)=7553x+880-4x+755-3x+4x=-755+880x=125 (детский)
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим: 3x+2(440-2x)=7553x+880-4x+755-3x+4x=-755+880x=125 (детский)y=190 (взрослый)
4sina*sin(п/3+a)*sin(п/3-a)=sin3a
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Рассмотрим правую часть: sin3a= sina – 4*sin³ (a)) = sina*( 1 –4*sin² (a))
Следовательно, выражения в левой и правой частях тождественно равны.