График - парабола ( здесь так же указывается направление ветвей параболы. Если переменная a>0 - ветви вверх, если a<0 - ветви вниз. В нашем случае ветви у параболы направлены вверх 1>0 )
D (y): x - любое ( какая бы парабола не была - эта строка неизменна)
Принцеп такой же подумай. Преобразовываем ур-е к типу y=kx+b, где k-это угловой коэфициент. В данном случае: 1) 3х-y+6=0 -y= -6-3x y=3x+6, здесь k1=3
2) x-y+4=0 -y= -x-4 y=x+4, здесь k2=1
Воспользуемся формулой tg(альфа) =k2-k1/1+k1k2
У нас k1=3, k2=1
Подставляем: tg(альфа) =(1-3)/1+(3*1)= -2/4=-1/2=1/2 всякий раз, как в знаменателе появляется нуль, угол θ надо считать равным ±90° (как поворот на +90°, так и поворот на -90° совмещает любую из перпендикулярных прямых с другой) .
По таблицам тригонометрических функций находим, что альфа=26° 33´ 54˝ градуса.
1) y = x2 + 2x - 3
График - парабола ( здесь так же указывается направление ветвей параболы. Если переменная a>0 - ветви вверх, если a<0 - ветви вниз. В нашем случае ветви у параболы направлены вверх 1>0 )
D (y): x - любое ( какая бы парабола не была - эта строка неизменна)
Вершина: ( -1; -4 ), т.к.
m ( x ) = -2:2 = -1
n ( y ) = (-1)2 +2(-1) - 3 = -4.
с осью OY: ( 0; -3 ), т.к.
y = 0x2 + 0*2 - 3
y = -3
с осью OX: ( -3; 0 ) и ( 1; 0 ), т.к.
x2 + 2x - 3 = 0
D = 4 - 4*1(-3) = 4 + 12 = 16
x1 = ( -2 - 4 ):2 = -3
x2 = ( -2 + 4 ):2 = 1.
Построим ещё две точки:
x = 2 y = 5
x = -2 y = -3.