
1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)


Это функция общего вида
2)


Это функция общего вида
3)


Это функция общего вида
3.
1)

Значит
![min_{[2;4]}f(x)=min_{[-4;-2]}f(x)=-1\\max_{[2;4]}f(x)=max_{[-4;-2]}f(x)=3](/tpl/images/1407/6823/69e2d.png)
2)

Значит
![min_{[2;4]}f(x)=-min_{[-4;-2]}f(x)=1\\max_{[2;4]}f(x)=-max_{[-4;-2]}f(x)=-3](/tpl/images/1407/6823/5cc0f.png)
4.

Это биквадратное уравнение. Делаем подстановку

Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно

Делаем проверку:
1) а=-1

Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3

Здесь появляется второй корень. Значит, это значение не подходит.
Окончательно получаем решение: а=-1
Надо представить число в цифровом виде (7640 млн = 7 640 + шесть нолей = 7 640 000 000), а потом первую цифру отделить от последующих ненулевых! цифр запятой (7,64). Это так называемая значащая часть. Потом считаем количество всех нолей в цифровом виде (7 640 000 000 = 7 нолей) и добавляем к числу нолей количество цифр после запятой (7, 64 = 2 цифры). Получается 9. Это будет степенью десятки, на которую будет умножаться значащая часть.
То есть:
Есть ограничение:
a (значащая часть) не должна быть больше или равна 10 и, не должна быть меньше 1.