№ 1.
Если перед скобками стоит знак минус, то знаки в скобках меняются на противоположные.
1) 5(a - b + c) = 5a - 5b + 5c
5(а - b + c) = 5a - 5b + 5c - тождественно равные выражения;
2) -2(х - 4) = -2х + 8
-2(х - 4) ≠ -2х - 8 - не являются тождественно равными выражениями;
3) (5а - 4) - (2а - 7) = 5а - 4 - 2а + 7 = (5а - 2а) + (7 - 4) = 3а + 3
(5а - 4) - (2а - 7) ≠ 3а - 11 - не являются тождественно равными выражениями.
№ 2.
-12а + (7 - 2а) = -12а + 7 - 2а = (-12а - 2а) + 7 = -14а + 7.
№ 3.
Пусть х - первоначальная цена товара (100%), тогда
х + 0,2х = 1,2х - цена товара после увеличения на 20%
1,2х - 0,2 · 1,2х = 1,2х - 0,24х = 0,96х - цена после снижения на 20%
х - 0,96х = 0,04х - на столь снизилась цена по сравнению с первоначальной
0,04 · 100 = 4% - на столько процентов снизилась начальная цена
ответ: снизилась на 4%.
3sin²x-2(sin²x+cos²x)-sinxcosx=0
3sin²x-2sin²x-2cos²x-sinxcosx=0
sin²x-sinxcosx-2cos²x=0
(sin²x/cos²x) - (sinxcosx/cos²x) - (2cos²x/cos²x)=(0/cos²x)
tg²x - tgx -2=0
t=tgx
t² -t-2=0
D=(-1)² -4*(-2)=1+8=9
t₁=(1-3)/2= -1
t₂=(1+3)/2=2
При t=-1
tgx= -1
x= -п/4 + пк, к∈Z
На промежутке [-п; 3п/2]:
при к=0 х= -п/4;
при к=1 х= -п/4 + п = 3п/4.
При t=2
x=arctg2 + пк, к∈Z
На промежутке [-п; 3п/2] = [ -180°; 270°]:
arctg 2 ≈ 63°
при к= -1 х= arctg2 - п= 63° - 180°= - 117°
при к=0 х=arctg2
при к=1 х=arctg2 + п=63° + 180°=243°
ответ: а) -п/4 + пк, к∈Z;
arctg2 + пк, к∈Z.
б) arctg2 -п; - п/4; arctg2; 3п/4; arctg2 + п.