Пусть х километров - длина первой половины пути. Тогда x/34 ч. - время, за которое проехал автомобиль эту половину (ведь время равно расстоянию делить на скорость). Вторая половина пути имеет ту же длину х км. (она ведь половина, как и первая). Поэтому ее автомобиль проехал за x/51 часов. Средняя скорость движения, по определению, равна общему пройденному пути (который равен 2х км) делить на общее затраченное время, которое равно x/34+x/51 часов. Итак, средняя скорость равна 2x/(x/34+x/51)=2*34*51x/(51x+34x)=2*34*51/85=40,8 км/ч. В решении не понадобилось находить расстояние х, оно благополучно сократилось при нахождении средней скорости.
Пусть первому на выполнение работы отдельно нужно (х) часов второму --- (х-6) часов тогда за 1 час первый перевозит (1/х) часть зерна, за 4 часа --- (4/х) часть второй --- (1/(х-6)) часть зерна, за 4 часа --- (4/(х-6)) часть зерна вместе они за 4 часа перевозят все зерно, т.е. ЦЕЛОЕ --- единицу отсюда уравнение: (4/х) + (4/(х-6)) = 1 (4х-24 + 4х) / (х(х-6)) = 1 8х - 24 = x^2 - 6x x^2 - 14x + 24 = 0 по т.Виета корни (2) и (12) первый корень не имеет смысла, т.к. один грузовик не может перевести все зерно быстрее (за 2 часа), чем два грузовика вместе (за 4 часа) ответ: первому потребуется на перевозку зерна в одиночестве 12 часов, второму 6 часов. ПРОВЕРКА: первый за час перевозит (1/12) часть зерна, за 4 часа --- в 4 раза больше (4/12 = 1/3) второй за час перевозит (1/6) часть зерна, за 4 часа --- (4/6 = 2/3) вместе за 4 часа они перевезут (1/3)+(2/3) = 1 ---все зерно)))
Тогда x/34 ч. - время, за которое проехал автомобиль эту половину (ведь время равно расстоянию делить на скорость).
Вторая половина пути имеет ту же длину х км. (она ведь половина, как и первая). Поэтому ее автомобиль проехал за x/51 часов.
Средняя скорость движения, по определению, равна общему пройденному пути (который равен 2х км) делить на общее затраченное время, которое равно x/34+x/51 часов.
Итак, средняя скорость равна
2x/(x/34+x/51)=2*34*51x/(51x+34x)=2*34*51/85=40,8 км/ч.
В решении не понадобилось находить расстояние х, оно благополучно сократилось при нахождении средней скорости.