1. Область определения функции — множество всех действительных чисел.
2. Множество значений функции:
Так как синус изменяется от -1 до 1, то оценивая в виде двойного неравенства, имеем
Множество значений функции y=-2sinx: отрезок [-2;2].
3. Функция периодическая с периодом T = 2π
4. Функция нечетная , так как y(-x) = 2sin x = -y(x)
5. Наибольшее значение, равное 2, при
Наименьшее значение, равное -2, при
6. Функция возрастает на отрезке и на отрезках, получаемых сдвигами этого отрезка на
убывает на отрезке и на отрезках, получаемых сдвигами этого отрезка на
ответ: ( (7+√17) / 2; (7-√17)/2 ); ( (7-√17) / 2; (7+√17)/2 ).
Объяснение:
ху-х=4,
2х+у=7;
Из второго уравнения выразим у через х.
у=7-2х;
Подставим значение у в первое уравнение.
х(7-2х)=4; 7х-2х²=4; -2х²+7х-4=0; 2х²-7х+4=0;
D=49-4*2*4=49-32=17;
х₁₂=(7±√17) / 2;
х₁=(7+√17) / 2; х₂=(7-√17) / 2.
Подставим значения х в выражение у:
у₁=7 - (7+√17) / 2= 14/2 - (7+√17) / 2=(14-7-√17) / 2=(7-√17)/2;
у₂=7-(7-√17) / 2= 14/2 - (7-√17) / 2=(14-7+√17) / 2=(7+√17)/2.
ответ:( (7+√17) / 2; (7-√17)/2 ); ( (7-√17) / 2; (7+√17)/2 ).
x=3
Объяснение:
В точке персечения з віссю Ох y =0? подставляем в уравнение графика и получаем, что х=3