и
– среднеарифметическое равно
и при этом
на
меньше двадцати пяти и на
больше семнадцати.
монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на
монет меньше изначального, а у Пети на
монет больше изначального. А значит, вначале у Васи было на
монет больше, чем у Пети.
монет. Тогда у Пети
монет.
монет, а у Пети-II будет
монет. При этом у Пети-II монет в
раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в
раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:



было целым, целой должен быть и результат деления в дроби, а чтобы
было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда
откуда:




было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет
откуда:
Первое число — 18, второе — 6.
Объяснение:
Пускай задуманы числа x — первое — и y — второе. Составим по условию систему уравнений:
{ (x/2)+2y = 21
{ 3y-(x/3) = 12
Умножим первое уравнение на 2, а второе — на 3:
{ x+4y = 42
{ 9y-x = 36
Сложим уравнения по частям:
{ 13y = 78
{ x = 42-4y
{ y = 6
{ x = 42-6×4 = 42-24 = 18