1.√(7-3x)>5 ОДЗ: 7-3х≥0 Возводим обе части неравенства в квадрат: 7-3х> 25; Система: 7-3х≥0; 7-3х >25 равносильна неравенству 7-3х>25; -3x> 25-7; -3x > 18; x< -6. ответ. (-∞;-6). 2. √(2x+1)>-3 неравенство верно при любом х из ОДЗ. ОДЗ: 2х+1 ≥ 0 х ≥ -0,5 О т в е т. [-0,5;+∞) 3. √(3+2x)>=√(x+1) ОДЗ: 3+2х≥0 ⇒ x ≥ -1,5 х+1≥0 ⇒ x ≥-1 ОДЗ: х≥-1 Возводим неравенство в квадрат. 3+2х ≥ х+1; х ≥ -2 ответ с учетом ОДЗ х≥ -1 О т в е т. [-1;+∞)
4. √(8-2x)=<√(6x+15) ОДЗ: 8-2х ≥0 ⇒ х ≤ 4 6х+15≥0 ⇒ х≥-2,5 ОДЗ: - 2,5 ≤ х ≤ 4. Возводим неравенство в квадрат: 8 - 2х ≤ 6х + 15; -2х - 6х ≤ 15 - 8 - 8х ≤ 7 х ≥ -7/8 С учетом ОДЗ: О т в е т. [-7/8;4]
Решение:
Примем скорость первого бегуна за х, тогда скорость второго бегуна х + 8.
Примем расстояние одного круга за S. Тогда первый бегун пробежал за час S - 1 км.
Тогда х = ( S - 1 ) / 1 = S - 1.
Второй бегун пробежал весь круг за 60 - 20 = 40 минут или 2/3 часа, значит его скорость равна:
х + 8 = S / ( 2/3 );
х = S / (2/3 ) - 8.
Теперь можем составить уравнение и найти расстояние 1 круга:
S - 1 = S / (2/3 ) - 8;
S - 1 = 3S/2 - 8;
2S - 2 = 3S - 16;
-2 + 16 = 3S - 2S;
S = 14 км.
Теперь, зная расстояние, можем найти скорость:
х = 14 - 1 = 13 км/ч.
ответ: Скорость первого бегуна 13 км/ч.
x=5 y=1
Объяснение:
{x=6-y
{3x+4y=19
{x=6-y
{3(6-y)+4y=19
{x=6-y
{y=1
{x=6-1
{y=1
{x=5
{y=1