М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maratsafa480
maratsafa480
14.07.2021 00:35 •  Алгебра

Выражение: (3x-2y)^2 - (2x-y)^2 надо

👇
Ответ:
KV4
KV4
14.07.2021
(3x-2y)^{2}-(2x-y)^{2}=9x^{2}-12xy+4y^{2}-4x^{2}+4xy-y^{2}=5x^{2}+3y^{2}-8xy
4,7(46 оценок)
Открыть все ответы
Ответ:
mrku
mrku
14.07.2021
Для решения данной задачи нам необходимо знать, что периметр куба состоит из длины всех его сторон.

Шаг 1: Найдем длину стороны куба.
Для этого воспользуемся свойством диагонали куба. Диагональ куба является гипотенузой правильного прямоугольного треугольника, в котором катеты равны длине стороны куба.
Используя теорему Пифагора, можем записать:
(Длина стороны куба)^2 + (Длина стороны куба)^2 = (Длина диагонали куба)^2.
Так как длина диагонали равна 10 корень из 2, то получаем:
(Длина стороны куба)^2 + (Длина стороны куба)^2 = (10 корень из 2)^2.
Упрощая уравнение, имеем:
2*(Длина стороны куба)^2 = 200 (поскольку (10 корень из 2)^2 = 10^2 * (корень из 2)^2 = 100 * 2 = 200).
Делим обе части уравнения на 2:
(Длина стороны куба)^2 = 100.
Извлекаем квадратный корень:
Длина стороны куба = корень из 100.
Поскольку сторона куба не может быть отрицательной, получаем:
Длина стороны куба = 10.

Шаг 2: Найдем периметр куба.
Периметр куба состоит из суммы длин всех его сторон. В данном случае, так как все стороны куба равны между собой, умножим длину одной стороны на 12 (так как куб имеет 6 граней по 2 одинаковые стороны на каждой грани).
Периметр куба = Длина стороны куба * 12.
Подставляем значение длины стороны куба:
Периметр куба = 10 * 12 = 120.

Ответ: периметр куба равен 120.
4,4(91 оценок)
Ответ:
Давайте по порядку пройдемся по каждой функции и найдем их производные.

1) f(x) = 2x/7 - 3x^5/10 + 4x^3 - x - 10

Для нахождения производной данной функции, мы должны найти производные каждого слагаемого и сложить их.

Производная первого слагаемого 2x/7 будет (2/7)*1 = 2/7.

Производная второго слагаемого -3x^5/10 будет (-3/10)*(5x^4) = -3/2*x^4.

Производная третьего слагаемого 4x^3 будет 4*(3x^2) = 12x^2.

Производная четвертого слагаемого -x будет -1.

Производная пятого слагаемого -10 будет 0, так как это константа.

Поэтому производная функции f(x) = 2x/7 - 3x^5/10 + 4x^3 - x - 10 будет:

f'(x) = (2/7) - (3/2)x^4 + 12x^2 - 1.

2) f(x) = -x/5 + 2x^3/3 - x^2 + 5/x^2

Производная первого слагаемого -x/5 будет (-1/5)*1 = -1/5.

Производная второго слагаемого 2x^3/3 будет (2/3)*(3x^2) = 2x^2.

Производная третьего слагаемого -x^2 будет -2x.

Производная четвертого слагаемого 5/x^2 будет (-5/x^3)*1 = -5/x^3.

Поэтому производная функции f(x) = -x/5 + 2x^3/3 - x^2 + 5/x^2 будет:

f'(x) = -1/5 + 2x^2 - 2x - 5/x^3.

3) f(x) = 2x^5 + x^4 - 3x^2 + 5x + 6/3x^2

Производная первого слагаемого 2x^5 будет 2(5x^4) = 10x^4.

Производная второго слагаемого x^4 будет 4x^3.

Производная третьего слагаемого -3x^2 будет -3(2x) = -6x.

Производная четвертого слагаемого 5x будет 5.

Производная пятого слагаемого 6/3x^2 будет (6/3)(-2x)/(x^3) = -4/(x^3).

Поэтому производная функции f(x) = 2x^5 + x^4 - 3x^2 + 5x + 6/3x^2 будет:

f'(x) = 10x^4 + 4x^3 - 6x + 5 - 4/(x^3).

4) f(x) = -1/2x^4 + 1/x^2 - 1/4x

Производная первого слагаемого -1/2x^4 будет (-1/2)(4x^3) = -2x^3.

Производная второго слагаемого 1/x^2 будет -2/x^3.

Производная третьего слагаемого -1/4x будет -1/4*(-1/x^2) = 1/(4x^2).

Поэтому производная функции f(x) = -1/2x^4 + 1/x^2 - 1/4x будет:

f'(x) = -2x^3 - 2/x^3 + 1/(4x^2).

Таким образом, мы нашли производные для всех заданных функций. Если у тебя возникнут еще вопросы по какому-либо из решений, я готов объяснить их более подробно.
4,4(88 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ