Решение Чтобы камни пролетали над стеной не менее метра, значит над землёй не менее 1 метра (9 метров высота стены + 1 метр). Значит справедливо неравенство ax²+bx ≥ 10, где ax²+bx — высота камня над землёй Решив его, определим наибольшее х: - (1/100) x² + (7/10)x - 10 ≥ 0 умножим на (- 100) x² - 70x + 1000 ≥ 0 D = 4900 – 4000 = 900 x = (70 – 30)/2 = 20 x = (70 + 30)/2 = 50 Решением неравенства будет интервал [20;50] или решение можно записать следующим образом: Машину для выполнения указанного условия нужно расположить на расстоянии 50 метров от стены (это наибольшее расстояние из полученного интервала). ответ: 50
Это происходит в том случае, когда система данных уравнений не имеет решений. Из второго уравнения находим y=c-x. Подставляя это выражение для y в первое уравнение, получаем x²+c²-2cx+x²=2, или 2x²-2cx+(c²-2)=0. Чтобы данное уравнение не имело действительных решений, его дискриминант D должен быть отрицательным. Но D=(-2c)²-4*2*(c²-2)=4c²-8c²+16=16-4c²=4(4-c²). Очевидно, что D<0 при 4-с²<0, а это неравенство выполняется при c>2 и при с<-2. Но так как в условии задачи речь лишь об отрицательных значениях c, то c<-2. ответ: при c<-2.
-0,8
Объяснение:
найдем точку пересечения прямых
3х+5у=5 (1);
7х-4у=43 (2);
умножим на 4 первое уравнение и на 5
второе уравнение:
12х+20у=20;
35х-20у=215;
сложим оба уравнения:
12х+20у+35х-20у=20+215;
47х=235;
х=5; подставим в (1);
3*5+5у=5;
у=-2;
х=5; у=-2 подставим в
у=k*x+2;
-2=5*k+2; k=-4/5=-0,8;
ответ: -0,8