8. Возможных исходов - 6, благоприятных исходов -2. Тогда вероятность равна 2/6 = 1/3;
9.
10. 4*4*3 = 48 чисел;
11.
12. 5/37 = 0,1;
13. В классе 12 + 16 - 25 = 3 ученикв и умные, и красивые. Значит ответ 3/25 = 0,12;
14. 9!/(9-6)! = 9!/3! = 60480;
15.
17. 1/10 = 0,1;
18.
21. х!/((х-1)! * (х - (х-1))!) * (х-1) = х!/(х-1)! * (х-1) = х(х-1) = 30 => х = 6 и х = -5. х = -5 не подходит, так как биноминальные коэффициенты C(n,m) определены при натуральных m,n. Значит х = 6.
а) 0.36; б) 0.91; в) 0.55
Объяснение:
а) ровно одно попадание
(первый выстрел удачный, второй и третий нет либо
второй удачный, первый и третий нет либо
третий удачный, первый и второй нет)
0.4*(1-0.5)*(1-0.7)+(1-0.4)*0.5*(1-0.7)+(1-0.4)*(1-0.5)*0.7=
0.4*0.5*0.3+0.6*0.5*0.3+0.6*0.5*0.7=
0.06+0.09+0.21=0.36
б) хотя бы одно попадание
(1 - ни разу не промахнулся)
1-(1-0.4)*(1-0.5)*(1-0.7)=1-0.6*0.5*0.3=1-0.09=0.91
в) ( два выстрела удачный, третий нет, либо
все три удачные)
0.4*0.5*(1-0.7)+(1-0.4)*0.5*0.7+0.4*(1-0.5)*0.7+0.4*0.5*0.7=
0.4*0.5*0.3+0.6*0.5*0.7+0.4*0.5*0.7+0.4*0.5*0.7=
0.06+0.21+0.14+0.14=0.55
(0.91-0.36=0.55)