Если катер вышел в 9.00 и прибыл назад в 16.00, значит в дороге он был 7 часов. V собств. = х км/ч; 1час 40мин = 1 2/3ч = 5/3 ч S V t туда 30 км х + 3 км/ч 30/(х +3)ч обратно 30 км х - 3 км/ч 30/(х -3) ч 30/(х +3) + 30/(х -3) = 7 - 5/3 30/(х +3) + 30/(х -3) = 16/3 | * 3(x +3)(x -3) 90(x - 3) + 90(x +3) = 16x² -9) 90x -270 + 90x +270 = 16x² - 144 16x² - 180x - 144 =0 4x² - 45x -36 = 0 x₁ = -6/8 ( не подходит по условию задачи) х₂ = 12 (км/ч) - собственная скорость катера.
4/5
Объяснение:
для решения данного примера необходимо знать одно из следствий первого замечательного предела:
lim (x→0) (tg x)/x = 1
3) lim (x→0) (2 tg 2x)/5x =
(используя следствие первого замечательного предела):
=lim (x→0) (2 * 2 tg 2x)/(5х*2)=
=lim (x→0) (2*2/5)* ( tg 2x)/2x =
= (2*2/5) * lim (x→0) ( tg 2x)/2x =
[ х→0, соответственно 2х→0]
= (2*2/5) * lim (2х→0) ( tg 2x)/2x =
= (2*2/5) * 1 = 4/5 * 1 = 4/5
( используя правило Лопиталя):
= lim (x→0) (2 tg 2x)' / (5x)' =
= lim (x→0) (2 * (2х)' * (1 / cos² 2x)) / 5 =
= lim (x→0) (2*2 / cos² 2x) / 5 =
= lim (x→0) (2*2/5) * ( 1/ cos² 2x) =
= (2*2/5) * lim (x→0) (1/cos²(2x)) =
= 4/5 * (1/cos²(2*0))=
= 4/5 * 1/1² = 4/5 * 1 = 4/5