ответ:ДЛЯ КУРАТОРОВ! Я учусь на дистанционном обучении уже три года! Это мне выдавал учитель! По этому я училась! Вот)
Объяснение: Уравнение =
Если ∣∣∣∣>1, то уравнение = не имеет корней.
Например, уравнение =2 не имеет корней.
Если ∣∣∣∣≤1, то корни уравнения выражаются формулой =(−1)+π,∈ℤ.
Что же такое ? Арксинус в переводе с латинского означает «дуга и синус». Это обратная функция.
Если ∣∣∣∣≤1, то (арксинус ) — это такое число из отрезка [−π2;π2], синус которого равен .
Говоря иначе:
=⇒=,∣∣∣∣≤1,∈[−π2;π2].
Рассмотрим данную теорию на примере.
Пример:
найти 12.
Выражение 12 показывает, что синус угла равен 12, т. е. =12.
Далее просто находим точку этого синуса на числовой окружности, что и является ответом:
sin.png
точка 12, находящаяся на оси , соответствует точке π6 на числовой окружности.
Значит, 12=π6.
Если π6=12, то 12=π6.
В первом случае по точке на числовой окружности находим значение синуса, а во втором — наоборот, по значению синуса находим точку на числовой окружности. Движение в обратную сторону. Это и есть арксинус.
Теорема. Для любого ∈[−1;1] справедлива формула (−)=−.
Частные случаи:
1. =0⇒=π,∈ℤ;
2. =1⇒=π2+2π,∈ℤ;
3. =−1⇒=−π2+2π,∈ℤ.
Пример:
решить уравнение =−12.
Используем формулу =(−1)+π,∈ℤ
и получаем ответ =(−1)(−π6)+π,∈ℤ.
Решение:
1. Воспользуемся формулами разность синусов и сумма косинусов:
Заметим, что оба равенства содержат один и тот же член:
В получившихся равенствах левые части равны, значит, равны и правые части:
Преобразуем данное равенство:
Теперь используем формулы понижения степени синуса и косинуса:
Преобразуем данное равенство:
n²(1-cos(x-y))=m²(1+cos(x-y));
n²-n²cos(x-y)=m²+m²cos(x-y);
m²cos(x-y)+n²cos(x-y)=n²-m²;
cos(x-y)(m²+n²)=n²-m²;
Используя основное тригонометрическое тождество, выразим sin(x-y):
ответ: