Чтобы упростить заданные выражения, сначала необходимо раскрыть скобки, для этого умножим значение перед скобками на каждое значение в скобках, а потом приведем подобные слагаемые:
1) 3 * (2х + 1) + 5 * (1 + 3х) = 3 * 2x + 3 * 1 + 5 * 1 + 5 * 3x = 6х + 3 + 5 + 15х = 21х + 8;
2) 4 * (2 + х) - 3 * (1 + х) = 4 * 2 + 4 * x - 3 * 1 - 3 * x = 8 + 4х - 3 - 3х = х + 5;
3) 10 * (n + m) - 4 * (2m + 7n) = 10 * n + 10 * m - 4 * 2m - 4 * 7n = 10n + 10m - 8m - 14n = 2m - 4n;
4) 11 * (5c + d) + 3 * (d + c) = 55c + 11d + 3d + 3c = 58c + 14d.
Задача : Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад. Определить вероятность того, что ему придётся звонить не более чем в 3 места.
Решение: Вероятность набрать верную цифру из десяти равна по условию 1/10. Рассмотрим следующие случаи:
1. первый звонок оказался верным, вероятность равна 1/10 (сразу набрана нужная цифра).
2. первый звонок оказался неверным, а второй - верным, вероятность равна 9/10*1/9=1/10 (первый раз набрана неверная цифра, а второй раз верная из оставшихся девяти цифр).
3. первый и второй звонки оказались неверными, а третий - верным, вероятность равна 9/10*8/9*1/8=1/10 (аналогично пункту 2).
Всего получаем P=1/10+1/10+1/10=3/10=0,3P=1/10+1/10+1/10=3/10=0,3 - вероятность того, что ему придется звонить не более чем в три места.
ответ: 0,3