М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nellimaer17
Nellimaer17
22.06.2021 18:23 •  Алгебра

Половина заданий написаны половина на фото .ЗАДАНИЯ СУММАТИВНОГО ОЦЕНИВАНИЯ № задания 1 2 3 4 5 6 1 ВАРИАНТ

Оценивание заданий работы

Количество |1|1|3|566

1. Решите неравенство: (x-3)(x-2) <0

A) (-3;-2)

B) (-2; 3) C) (2:3)

D) (-∞: 2] u (3; +0)

E) (-∞. 2) u [3:-)

2. Используя график функции у = 0.5х²-х - 4 найдите решение неравенства 0.5x²-x-42 0.

A) (-2; 4) B) [-2: 4]

C) (-x; - 2] u (4; + )

D) (-0.-2] u [4: +00)

E) (-∞;-2) u [4; +∞)


Половина заданий написаны половина на фото .ЗАДАНИЯ СУММАТИВНОГО ОЦЕНИВАНИЯ № задания 1 2 3 4 5 6 1

👇
Открыть все ответы
Ответ:
kotyaraasm
kotyaraasm
22.06.2021
1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ...
a1(1) = 1; d1 = 2
Миша - тоже по арифметической прогрессии
a2(1) = 2; d2 = 2
Всего Боря взял
S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60
7 < n < 8
Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13.
И у Бори получилось S1(7) = 7^2 = 49 конфет.
Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11.
Миша последний раз взял 14. Это тоже 7-ой раз.
Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56
Всего конфет было 60 + 56 = 116

2) 231 = 3*7*11
На каждом этаже квартир больше 2, но меньше 7, то есть 3.
Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира.
Квартира номер 42 - последняя во 2 подъезде.
Квартир с номерами больше 42 во 2 подъезде нет.
Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры.
Квартира номер 42 - последняя на 3 этаже.
4,6(69 оценок)
Ответ:
wiwhha
wiwhha
22.06.2021
\left \{ {{2x \leq 6} \atop { x^{2} +7x+60}} \right.
\left \{ {{x \leq 3} \atop {(x+6)(x+1)0}} \right.
Решим второе неравенство
_____-6_________-1_______
     +           -               +
(-\infty;-6)  и   (-1;+\infty)
Найдем пересечение решений
ответ: (-\infty;-6)    и    (-1;3]
2.
x_{1}=-2
x_{2} =-1
( я нашла корни по теореме Виета)
_____-2______-1________
+            -               +
ответ: (-\infty;-2)          и   (-1;+\infty)
\frac{ x^{2} -2x-8}{16- x^{2} } \geq 0
\frac{ x^{2} -2x-8}{ x^{2} -16} \leq 0
\left \{ {{ (x^{2}-2x-8)( x^{2} -16) \leq 0 } \atop { x^{2} -16 \neq 0}} \right.
Решим первое неравенство, найдем корни, приравняв нулю.
x_{1} =4
x_{2}=-2
x_{3}=-4
Разложим на множители 1 неравенство
(x+2)(x-4)(x-4)(x+4) \leq 0
(x+2)(x+4)( x-4)^{2} \leq 0
Отметим точки на числовой прямой, причем -2-закрашенная, а 4 и - 4 выколотые( исключены вторым неравенством)
______-4______-2_____4________
    +           -          +         +
Знаки ставятся справа налево начиная с +. Тк (х-4)^2, то на следующем промежутке знак не поменяется, далее чередуются -, +
ООФ (-4;-2] 
4,5(92 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ