М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
elenaagro79
elenaagro79
08.09.2021 02:30 •  Алгебра

по бострому ответьте №1. Разделите данные выражения на две группы Целые выражения (3a ^ 2)/(4b ^ 3); (t ^ 2 - 6t + 15)/(2t); (y - 4) ^ 3 + 1/y Дробные выражения (5x ^ 2)/4 + x/7; 8/(6m + 1); 3a - (b ^ 2)/(c ^ 4); (m ^ 2 - 3mn)/18; (x - 2)/(x + 2); 1/6 * m ^ 3 * n ^ 5 Какие из данных выражений являются рациональными дробями?​

👇
Открыть все ответы
Ответ:
Марцело
Марцело
08.09.2021
Р = 2(a+b) = 20
a+b = 10
диагональ прямоугольника (по т.Пифагора) = √(a² + b²)
можно рассмотреть и квадрат диагонали (для простоты вычислений), т.к.
функция √х -- монотонно возрастающая, т.е. чем меньше (х), тем меньше √х
d² = a² + b² = a² + (10-a)² = 2a² + 100 - 20a
для определения экстремума -- рассмотрим производную)))
f ' (a) = 4a - 20 = 0
а = 5 и b = 5 --- это квадрат)))
то, что это именно минимум, можно проверить устно)))
если возьмете стороны чуть другие (например, 4 и 6), то диагональ будет увеличиваться)))
4,7(2 оценок)
Ответ:
kirill4389
kirill4389
08.09.2021
Y = (x + 2)⁻³ + 1 = [(x + 3)(x² + 3x + 3)] / (x + 2)³
Для нахождения промежутков знакопостоянства функции надо решить неравенства f (x) > 0; f (x) < 0.
1) Проверим условие: f (x) > 0
 [(x + 3)(x² + 3x + 3)] / (x + 2)³ > 0
Дробь больше нуля, когда числитель и знаменатель одного знака. 
a)  [(x + 3)(x² + 3x + 3)] > 0, x + 3 > 0, x > - 3
(x + 2)³ > 0, x > - 2
x∈(-2;+ ≈ )
b)  [(x + 3)(x² + 3x + 3)] < 0, x + 3 < 0, x < - 3
(x + 2)³ < 0, x < - 2
x∈(-≈ ; - 3)
 Таким образом f (x) > 0 при x∈(-2;+ ≈ ) и x∈(-≈ ; - 3)
2) Проверим условие:  f (x) < 0.
 [(x + 3)(x² + 3x + 3)] / (x + 2)³ < 0
Дробь меньше нуля, когда числитель и знаменатель разных знаков. 
a)  [(x + 3)(x² + 3x + 3)] > 0, x + 3 > 0, x > - 3
(x + 2)³ <  0, x< - 2
x∈(-3;- 2 )
b)  [(x + 3)(x² + 3x + 3)] < 0, x + 3 < 0, x < - 3
(x + 2)³ > 0, x >  - 2
решений нет
 Таким образом  f(x) < 0 при x∈(-3;- 2 )
4,7(5 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ