По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*),
. И правда:
(*) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**),
. И правда:
(**) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
а) А(3;27)
х = 3, у = 27
у = х³
27 = 3³ ( верно) ⇒ А ∈ графику
б)В(-3; 27)
х = -3, у = 27
у =х²
27 = (-3)² ( неверно) ⇒ В∉ графику
в) С( -1; 1)
х = -1; у = 1
у = х³
1 = (-1)³ (неверно) ⇒ С∉ графику
г) Д(0;1)
х = 0; у = 1
у = х³
1 = 0³ (неверно)⇒ Д ∉ графику
д) Е(-2; -8)
х = -2; у = -8
у = х³
-8 = (-2)³ (верно) ⇒ Е ∈ графику
е) F(8; 2)
х = 8; у = 2
у = х³
2 = 8² (неверно) ⇒ F∉ графику