Координаты точки пересечения прямых (≈1,3; ≈2,8)
Решение системы уравнений (14/11; 2 и 27/33)
Объяснение:
Определить коэффициент а и найти решение системы уравнений графически:
ax + 3y = 11
5x +2y = 12, если известно что первое уравнение этой системы обращается в верное равенство при x=16 и y= -7.
1) Вычисляем а. Для этого в первое уравнение подставляем заданные значения х и у:
ax + 3y = 11
а*16+3*(-7)=11
16а-21=11
16а=11+21
16а=32
а=2
Решим графически систему уравнений:
2x + 3y = 11
5x +2y = 12
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
2x + 3y = 11 5x +2y = 12
3у=11-2х 2у=12-5х
у=(11-2х)/3 у=(12-5х)/2
Таблицы:
х -2 1 4 х -2 0 2
у 5 3 1 у 11 6 1
Согласно графика, координаты точки пересечения прямых (≈1,3; ≈2,8)
Решение системы уравнений (14/11; 2 и 27/33)
После снижения цен на каждую вещь в отдельности,общая цена снизилась на 195 рублей.Следовательно, 20% от шапки и 10% от шарфа стоят 195 рублей.
Составим уравнение : 0,2x+0,1y=195 и выразим из него x.
x = (1950-y)/2.
Вещи стоила 1200,значит уравнение имеет вид : x+y=1200. Подставим x.
(1950-y)/2+y=1200. Заносим левую часть под общий знаменатель и получаем
(1950+y)/2=1200.
По свойству пропорции : 1950+y=2400. Откуда y=550.
Найдём x.
x+550=1200,
x=650.
ответ: шапка - 650 рублей, шарф - 550 рублей.