Я думаю так: сначала распишем формулу синуса двойного угла: 2sinXcosX. Получается при подстановке 6(2sinXcosX)-4. раскроем скобки 12sinXcosX-4. Вынесем общий множитель 4(3sinXcosX-1). пока оставим это выражение в таком виде.
Дано,что cos2X=3/4 cos2x=1-2sin квадрат X 1-2sin квадрат X =3/4 2sin квадрат X=1/4 sin квадрат X=1/8 sinX= 1/ на 2 корня из двух
Теперь узнаем косинус из формулы sin квадрат X + cos квадрат X = 1, следовательно cos квадрат X= 1-sin квадрат X , значит cos квадрат X= 1-1/8, cos квадрат X =7/8, cosX=7/ на 2 корня из двух.
возвращаемся к первому выражению и подставляем полученные значения. 4(3*1/ на 2 корня из двух * 7/ на 2 корня из двух -1)= 4(21/8-1)= 4*13/8=6.5 ответ: 6.5
Вероятность выполнения нормы первым, вторым и третьим спортсменом равны соответственно p1=0.8, p2=0.7, p3=0.9, невыполнения - q1=1-p1=0.2, q2=1-p2=0.3, q3=1-p3=0.1. а) По крайней мере один спортсмен выполнит норму: то есть обеспечим отсутствие случая, когда все спортсмены не выполнят норму. То есть 1 - q1*q2*q3 = 1 - 0.2*0.3*0.1 = 0.994. б) Тут я хз, надо "по крайней мере" или "ровно" два спортсмена. Решу для обоих случаев. По крайней мере два спортсмена выполнят норму: Из ранее полученного значения вычтем еще и случаи, где ровно один спортсмен выполняет норму, а другие два не выполняют. 1 - q1*q2*q3 - p1*q2*q3 - q1*p2*q3 - q1*q2*p3 = 1 - 0.2*0.3*0.1 - 0.8*0.3*0.1 - 0.2*0.7*0.1 - 0.2*0.3*0.9 = 0.902. Ровно два спортсмена выполнят норму: p1*p2*q3 + p1*q2*p3 + q1*p2*p3 = 0.8*0.7*0.1 + 0.8*0.3*0.9 + 0.2*0.7*0.9 = 0.398.
Если не правильно, пишите клиенты(