Объяснение:
4 < b < 7 (1)
подобные примеры решаются просто - домножаем все части неравенства, прибавляем/отнимаем от всех частей нужные числа, пока не получим посередине, то, что требуется в доказательстве
1) надо в средней части получить 13- 3b
умножим все части (1) на -3 (здесь помним, при умножении на отрицательное число знаки неравенства меняются на противоположные)
-12 > -3b > -21 (2)
добавим ко всем частям (2) +13
-12 + 13 > 13-3b > -21 +13 или -8 < 13-3b < 1 -что и требовалось доказать
2) здесь пойдем от обратного
если 1/m < 1/n, то это значит, что m < n
и тогда из нашего ответа
перепишем неравенство для знаменателей
получим
3 < 2b-5 < 9
теперь нам надо получить в середине b
прибавляем ко всем частям +5 и потом делим все части на 2
3+5 < 2b < 9+5
8 < 2b < 14
4 < b < 7 это и есть наша формула (1)
неравенство доказано.
Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
⇒ ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты) ⇒
Samk/Sabm=1/2 ⇒
11/Sabm=1/2 =>
22=Sabm.
Sabk=22см²+11см²=33см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
⇒
Sabc=33*2=66см². Это ответ.