Из двух последних уравнений следует, что x4=x5. Тогда из первого и третьего уравнений находим x1=x2+1. Из первого уравнения находим x4=x5=x6+1, а из третьего и четвёртого уравнения следует x3=x4+1=x5+1=x6+2. Из четвёртого и пятого уравнения следует x2=x6+3. Наконец, из первого и шестого уравнений следует Отсюда x2=x1-1, x3=x1-2, x4=x5=x1-3, x6=x1-4, x7=x1-5. Складывая все уравнения системы, получаем 2*x1+2*x2+2*x3+2*x4+2*x5+2*x6+2*x7=2*(x1+x2+x3+x4+x5+x6+x7)=2*(x1+x1-1+x1-2+x1-3+x1-3+x1-4+x1-5)=2*(7*x1-18)=9+8+8+9+6+4+4=48, откуда 7*x1-18=48/2=24, 7*x1=42, x1=6 лет - первому сыну. Тогда x2=5, x3=4, x4=x5=3, x6=2, x7=1. ответ: первому сыну - 6 лет, второму - 5, третьему - 4, четвёртому и пятому - по 3 года, шестому - 2 года, седьмому - 1 год.
ответ: 5-10*x-5y
Объяснение:
Первый не рациональный)
1) log(3; 126) = log (3; 3^2 *7 * 2) = log(3; 3^2) +log(3; 7) +log(3; 2) =
= 2+log(3; 7) +log(3; 2) = 1/x
2) log(7; 126) = log(7; 3^2) +log(7; 7) +log(7; 2) = 2*log(7; 3) +1 + log(7; 2) = 1/y
log(126; 32) = log(126; 2^5) = 5* log(126; 2) = 5/log(2; 126) ) =
= 5/( log(2; 3^2) +log(2; 7) +log(2; 2) ) = 5/( 2*log(2; 3) +log(2; 7) +1)
log(3; 7) = log(126; 3)/log(126; 7) = x/y
log(7; 3) =y/x
Из равенства 1 следует :
log(2; 3) = 1/( 1/x - 2 -x/y) = x*y/( y -2*x*y -x^2)
Из равенства 2 следует :
log(2; 7) = 1/( 1/y - 2*y/x -1) = x*y/( x -2*y^2 -x*y)
log(126; 32) = 1/( 2*x*y/( y -2*x*y -x^2) + x*y/( x -2*y^2 -x*y) +1 )
Второй рациональный)
log(126; 126) = log(126; 3^2 *7 *2) = log(126; 3^2)+log(126; 7)+log(126; 2) = 2*log(126; 3) +log(126; 7) +log(126; 2) = 1
log(126; 2) = 1-2*x-y
5*log(126; 2) =5-10*x-5*y
log(126; 32) = 5-10*x-5*y
Но значит ли это, что первый ответ неправильный?
Не совсем так.
Дело в том, что если решить, например, такую систему уравнений:
1-2*x-y = 1/( 2*x*y/( y -2*x*y -x^2) + x*y/( x -2*y^2 -x*y) +1 )
126^x +126^y = 10
То одним из решений этой системы будет :
x= log(126; 3)
y=log(126; 7)