Вектор, перпендикулярный плоскости 2x + 3y - 4z + 2 = 0 имеет координаты (2; 3; -4). Он обязательно будет лежать в плоскости, перпендикулярной данной, уравнение которой нам нужно составить. Отложим этот вектор, например, от точки A (-3; 2; 1), т. е. проведём вектор АС, который лежит в искомой плоскости. Получим точку С (-1; 5; -3), которая тоже лежит в искомой плоскости. Зная координаты трёх точек A (-3; 2; 1), В (4; -1; 2) и С (-1; 5; -3), лежащих в одной плоскости, найдём уравнение этой плоскости. Для этого составляем определитель: | x-(-3) 4-(-3) -1-(-3) | | y-2 -1-2 5-2 | = 0 | z-1 2-1 -3-1 |
Объяснение:
здесь надо рассмотреть два случая
1) х-5>0, x>5, тогда |x-5|=x-5 и 1/(х-5) -2<0, (1-2x+10)/(x-5) <0,
(11-2x)/(x-5) <0 , - __(5)+___(5,5)___-___
общее решение x>5,5 (с учетом, что x-5>0)
2) x-5<0, x<5, тогда |x-5|=5-x и получим уравнение:
1/(5-x) -2<0, (1-10+2x)/ (5-x) <0, (2x-9)/ (5-x) <0
-___(4,5)+(5)___- и общее решение
x<4,5 (с учетом, что x-5<0) , объединяем два случая и
ответ: (-Б; 4,5) и (5,5; +Б) (Б- бесконечность)